

등속도로 하강중인 Rotating Parachute의 공력특성에 관한 수치 해법 연구

A Numerical Study of Aerodynamic Characteristics for a Rotating Parachute in Steady Descending Motion

저자 (Authors)	제상언, 정성기, 곽상혁, 명노신, 조태환 S. E. Je, S. G. Jung, S. H. Kwag, R. S. Myong, T. H. Cho
출처 (Source)	<u>한국전산유체공학회 학술대회논문집</u> , 2005.4, 116-119 (4 pages)
발행처 (Publisher)	<u>한국전산유체공학회</u> Korean Society of Computational Fluids Engineering
URL	http://www.dbpia.co.kr/Article/NODE01925384
APA Style	제상언, 정성기, 곽상혁, 명노신, 조태환 (2005). 등속도로 하강중인 Rotating Parachute의 공력특 성에 관한 수치 해법 연구. 한국전산유체공학회 학술대회논문집, 116-119.
이용정보 (Accessed)	경상대학교 117.16.164.*** 2017/09/12 16:11 (KST)

저작권 안내

DBpia에서 제공되는 모든 저작물의 저작권은 원저작자에게 있으며, 누리미디어는 각 저작물의 내용을 보증하거나 책임을 지지 않습니다. 그리고 DBpia에서 제공 되는 저작물은 DBpia와 구독계약을 체결한 기관소속 이용자 혹은 해당 저작물의 개별 구매자가 비영리적으로만 이용할 수 있습니다. 그러므로 이에 위반하여 DBpia에서 제공되는 저작물을 복제, 전송 등의 방법으로 무단 이용하는 경우 관련 법령에 따라 민, 형사상의 책임을 질 수 있습니다.

Copyright Information

Copyright of all literary works provided by DBpia belongs to the copyright holder(s) and Nurimedia does not guarantee contents of the literary work or assume responsibility for the same. In addition, the literary works provided by DBpia may only be used by the users affiliated to the institutions which executed a subscription agreement with DBpia or the individual purchasers of the literary work(s) for non-commercial purposes. Therefore, any person who illegally uses the literary works provided by DBpia by means of reproduction or transmission shall assume civil and criminal responsibility according to applicable laws and regulations.

등속도로 하강중인 Rotating Parachute의 공력특성에 관한 수치 해법 연구

제 상 언^{*1}, 정 성 기^{*1}, 곽 상 혁^{*2}, 명 노 신^{*3}, 조 태 환^{*3}

A Numerical Study of Aerodynamic Characteristics for a Rotating Parachute in Steady Descending Motion

S. E. Je, S. G. Jung, S. H. Kwag, R. S. Myong, and T. H. Cho

In this paper a method for analysing aerodynamic characteristics of a rotating parachute in steady descending motion is presented. Because of a complex geometric configuration of the parachute associated with side vents and discontinuous skirts, special procedure was adopted to handle the geometry in the analysis. A panel method was successfully applied to the present problem and yielded good results using above procedure. A CFD code using the full Navier–Stokes equations was also applied and provided good results. Parachute free drop and wind tunnel tests were performed to determine the fully developed canopy configuration and aerodynamic characteristics. The method can be used for optimizing the parachute size and side vent configurations in the design period.

Key Words: 회전 낙하산 공기역학(Rotating Parachute Aerodynamics), 패널법(Panel Method), 전산유체역학(CFD).

1. 서 론

다공성의 재질로 만들어진 낙하산의 공력특성 연구는 아주 복잡한 주위 공기 흐름과의 간섭으로 설계 성능의 예측에 많은 어려움이 있어 대부분의 자료 획득은 풍동을 이용한 실험적 과정[5]을 통 해서 얻어지고 있다. 따라서 각종 참고문헌을 통 해 상세한 자료를 확보하기에 어려움이 있었고, 대개의 경우 독점적인 자료로 취급해 발표되지 않

*2 한국항공우주산업(주)

*3 종신회원 경상대학교 기계항공공학부

거나, 일부 낙하산의 형상과 실험조건을 부분적으 로만 기술하여 설계 단계에서 설계 타당성을 확인 하기가 쉽지 않은 실정이다. 본 연구에서는 전산 수치기법을 이용하여 회전하는 낙하산의 낙하속도 와 정상상태의 회전속도를 예측하기 위한 연구를 수행하였다. 낙하속도 계산을 위한 수치해석 기법 으로는 퍼텐셜 방정식과 경계층 이론을 접목시킨 점성-비점성 연계 기법과 비압축성 Navier -Stokes 코드를 사용하였다. 회전 낙하산의 정상 상태의 회전 속도는 자체 개발한 코드를 이용하여 계산하였다.

^{*1} 경상대학교 대학원 항공공학과

2. 전산수치기법을 이용한 공력해석 2.1 패널코드

낙하산의 Side Vent 크기의 변화에 따른 공력특성의 변화를 효율적으로 예측하기 위해 패 널코드[1]와 경계층 이론[2]을 접목시킨 점성-비점 성 연계 기법을 사용하였다. 패널 코드는 용출 (source)과 용흡중첩(doublet)[3]을 이용한 비점성, 비압축성 Laplace 방정식을 포텐셜 유동에 대한 지배방정식으로 사용하였다. Laplace 지배 방정식 은 알맞은 경계 조건을 적용함으로서 풀이될 수 있다. 외부 흐름의 경우에 유동 영역은 물체의 표 면과 무한대에 의해 경계되어 있다. 물체 표면에 서의 경계조건은 flow tangency condition이며 무한대에서는 교란 퍼텐셜을 영으로 하는 조건을 적용하였다. 물체의 비정상 유동은 자유 후류를 이용한 시간영역 패널법을 사용하여 비정상 유통 을 해석하는 방법을 이용하였다. 경계층 이론은 B. Thwaites 기법[2]를 기초로 하였다.

2.2 Navier-Stokes 코드

저속에서의 낙하산주위의 공기흐름을 정확 히 묘사하기 위해 비압축성 Navier-Stokes 방정 식을 사용하였다. 본 연구에서는 Cell 기반 유한 체적법, Implicit 시간 전진법을 근간으로 하는 코 드를 사용하였다. 또한 압력-속도 결합에 대한 이 산화는 SIMPLE 알고리즘을 사용하였으며, 운동 량, 난류 동 에너지 및 난류 소산율은 1차 풍상 기법을 사용하였으며 난류모델은 k-epsilon 모델 을 사용하였고 경계조건은 벽면에서 no flow condition을 적용하였다.

2.3 회전하는 낙하산 문제에 적용

낙하산의 전개시의 형상은 낙하산 재질의 특성과 낙하산 내외부의 압력에 의하여 결정될 것 이며 본연구의 범위에는 포함되어 있지 않아 실험 에 의한 측정 및 참고자료들을 통하여 전개시의 형상을 결정하였다. 전처리 과정에서의 Side Vent 크기의 변화와 Suspension Line의 길이에 따라 달라지는 형상을 구현하기 위해서는 기존의 상용 화된 도구를 이용하기에는 시간적 소요가 많아 자 체 코드를 개발하여 전처리 과정을 처리하였다. 패널 코드에서 낙하산 각각의 조각을 날개로 가정 하여 문제를 해석한 결과 상당히 좋은 결과를 얻 을 수 있었다. 후류는 날개이론을 적용하였기 때 문에 앞전 부근에서는 유동의 박리가 일어나지 않 고 Kutta 조건을 적용한 끝전과 Side Vent에서의 제트류에 의한 후류[6]만을 적용시켰다. 정상 상태 에서의 회전력을 계산해본 결과 Side Vent에서 의 제트류에 대한 계산이 실제 현상과는 차이가 존재해 Side Vent에서 흘러 나오는 제트류에서의 속도를 이용한 Roll Moment 계수와 낙하산 캐노 마찰력과 Suspension Line. 피에서의 표면 Payload에 의한 Roll Damping 계수[7]를 계산하 여 정상 상태에서의 낙하산의 회전속도를 계산 하 였다.

3. 예측 결과 및 검증

3.1 계산 조건

전개된 낙하산의 초기 하강속도는 13m/sec로 가정하였으며 낙하산의 직경은 1.4m이다. 패널코 드에서의 격자는 낙하산 한조각의 패널수가 30×14로 총 3600개의 패널을 사용하였다. Navier Stokes 코드의 격자는 비정렬 격자로써 2,320,477 개의 격자와 19개의 블럭으로 구성하였다. 캐노피 를 펼쳤을 때의 지름을 기준으로 캐노피에서 유입 류 및 원방까지의 비율을 지름의 3배, 캐노피에서 유출구까지의 비율을 지름의 5배를 부여하였다. 캐노피의 끝단과 Suspension Line이 접선인 관계 인 낙하산의 자유흐름의 속도는 약 12m/s이다. 풍 동 시험부는 2.2m× 2.0m인 아음속 풍동이며, 낙 하산의 직경은 1.0m이다. 전개시의 투영 직경은 0.78m로 약 2.8배가 된다.

3.2 주요 공력 계수

3.2.1 정상 상태에서의 항력 계수

Fig. 1처럼 전개된 낙하산 캐노피인 경우 정상 상태에서의 패널코드와 Navier-Stokes 코드를 이 용해서 항력계수와 낙하속도를 계산하였다. 낙하 산의 직경은 1.4m이고 자유류 속도는 13m/sec이 다.

Fig. 1 Initially assumed inflated parachute canopy shape.

아래 Table 1은 정상상태에서의 낙하산의 항력 계수를 나타낸다. 패널 코드는 $C_D = 1.0483$ 이고 Navier-Stokes 코드는 $C_D = 1.14$ 로 두 코드상의 약간의 값의 차이는 있으나 비슷한 경향을 보이고 있다.

Table 1 C_D and V_d of parachute.

구 분	Panel Code	N-S Code
C_D	1.0483	1.14
$V_{descent}[8]$	10.487m/s	10.06m/s

3.2.2 비정상 상태에서의 항력 계수

캐노피의 끝단이 Suspension Line과 접선 이 되지 않는 Fig. 1의 형상은 실제 낙하산이 전 개될 때의 형상과는 다소 차이가 있어 비디오 분 석을 통하여 자체 개발한 낙하산 형상 구현 프로 그램을 이용하여 Fig. 2처럼 캐노피의 끝과 Suspension Line이 서로 접선이 되도록 형상을 재설계 하였다. 새로운 형상을 사용하여 항력계수 를 계산해 본 결과 패널 코드와 풍동 실험값이 비 슷한 값을 보여주었다.

Fig. 2 Corrected rotating parachute canopy shape.

Table 2는 풍동 실험, 회전하지 않을 때의 낙하 산 및 회전할 때의 낙하산의 항력계수를 비교한 것이다. 자유류의 속도는 풍동에서는 11.862m/sec 이고, 낙하산의 하강속도는 12m/sec을 사용하였 다. 계산결과 회전할 때와 회전하지 않을 때의 항 력계수 값이 회전할 때의 값보다 더 크게 나타났 고, 풍동 실험과 회전하는 낙하산의 비교에서는 값의 차이는 있으나 거의 유사한 값을 보여주었 다.

Table 2 Comparison of drag coefficients forprediction and experiment.

구 분	V_∞	Diameter	C_D
Experiment	11.862m/sec	1.0m	0.623
Steady State	12m/sec	1.35m	0.611
Rotating	12m/sec	1.35m	0.639

3.2.3 회전하는 낙하산의 Roll Moment 계수

직경이 1.35m인 회전하는 낙하산에 대해 Side Vent의 면적이 일정할 때의 Roll Moment 계수와 Roll Damping 계수에 의한 정상상태에서의 낙하 산의 회전속도를 계산하였다. Fig. 3은 낙하속도 에서 *C*_{l₀}[7]은 0.032이고 Roll Damping이 일어나 면서 회전이 감속되며 낙하속도에 따라 정상상태 의 회전속도가 다르게 나타남을 보여준다.

Fig. 3 Roll moment coefficient change for angular rate and descent velocity.

Table 3은 Fig. 3에서의 낙하속도에 대한 정상 상태의 회전속도 값을 표로 나타낸 것이다.

Table 3 Steady state angular velocity.

Descent Velocity	Steady State Angular Rate		
12(m/sec)	2.64(rev/sec)		
13(m/sec)	2.9(rev/sec)		
14(m/sec)	3.2(rev/sec)		

Fig. 4는 직경이 1.35m인 회전하는 낙하산에 대 해 Side Vent의 면적과 회전속도에 대한 관계를 나타낸 것이다. 낙하속도가 12m/sec를 기준으로 했을 때 Side Vent의 면적이 0.02m² 이라고 하면 2.6 rev/sec의 정상상태 회전속도를 갖는다. 이 그 래프는 회전하는 낙하산의 초기 Side Vent 면적 을 정할 때 좋은 자료가 된다. 또한 현 Side Vent 면적에 대해서는 12m/sec에서의 낙하산 풍동실험 의 비디오 분석과는 거의 일치함을 보였다.

Fig. 4 Relation of angular rate and side vent area in constant descent velocity.

4. 결 론

본 연구에서는 낙하산 주위의 저속 공기흐 름을 정확히 묘사하기 위해 점성-비점성 연계기 법 코드와 비압축성 Navier-Stokes 코드를 사용 하였다. 회전하는 낙하산의 항력계수를 이용하여 하강속도를 계산하였으며, 낙하산의 Side Vent에 서 흘러나오는 제트류에 의한 롤 모멘트 계수와 낙하산 표면의 마찰력, Suspension Line과 Payload에 의한 롤 댐핑 계수를 이용하여 정상 상태에서의 회전속도를 계산하였다. 계산결과 낙 하산 항력계수와 회전속도에서는 풍동 실험결과에 근접하는 결과를 얻었지만, 정확한 검증을 위해서 는 실제 회전 낙하산의 Suspension Line 및 Payload에 관련된 회전항력에 대한 계산이 필요 하다고 판단된다. 패널기법에 의한 전산예측 방법 은 형상의 변화와 후류의 박리점 위치에 따라 결 과가 민감하게 변화하므로 정확한 형상과 박리점 의 예측에 대한 깊은 연구가 필요하다고 판단된 다.

후기

본 연구는 국방과학연구소와 경상대학교 항공 기부품기술연구센터의 지원으로 수행되었으며, 이 에 감사드립니다.

참고문헌

- T. H. Cho, "Computation of Three -Dimensional Potential Flow around a Finite Wing with a Leading Edge Discontinuity at High Angle of Attack," *Ph.D. Thesis*, University of Maryland, 1985.
- [2] Joseph A. Schetz, *Boundary Layer Analysis*, Prentice Hall, 1993.
- [3] Katz, J., and Maskew B., "Unsteady Low-Speed Aerodynamic Model for Complete Aircraft Configuration," AIAA Paper 86–2180, 1986; also, Journal of Aircraft, Vol. 25, No. 4, pp. 302–310, 1988.
- [4] Wilcox, D. C., *Turbulence Modeling for CFD*, 2nd ed., DCW Industries, 2002.
- [5] 오세윤, 김찬기, 이종건, 안승기, "낙하산 캐 노피 전개 특성에 관한 실험적 연구," 한국항 공우주학회, 제30권, 제7호, pp. 11-19, 2002.
- [6] Strickland, J. H. "On the Utilization of Vortex Methods for Parachute Aerodynamic Predictions." AIAA-86-2455, 1986.
- [7] Doherr, K. F., and Synofzik, R. "Investigations of Rotation Parachutes for Submunitione." *AIAA-86-2438*, 1986.
- [8] Knacke, T. W., Parachute Recovery Systems, Para Publishing, 1992.