IR aspect of aircraft propulsion system and IR-RF interplay in design

November 29th Thursday, 2018 (10:00~10:45)

Rho-Shin Myong

Professor, Department of Aerospace and Software Engineering Director, (Engineering) Research Center for Aircraft Core Technology Gyeongsang National University Jinju, South Korea *myong@gnu.ac.kr*

Presented at Pre-SAROD Stealth Workshop, Bangalore, India

Outline

Background and introduction of aircraft survivability

IR fundamentals

IR aspect of UCAV propulsion system (nozzle and exhaust system) Interplay of IR-RF

Aircraft signatures and stealth

Definition of stealth

The act of moving, proceeding, or acting in a *covert* way The ability to *blend* in with the background Reducing the aircraft signatures and observables, thus providing the aircraft with the capability of evading the enemy's air defence

Aircraft signatures

Active

radar : airframe, engine inlet, weapons, radome, canopy Passive

infrared : engine casing, airframe, exhaust plume, sun glint
acoustic : engine parts, engine exhaust, airframe
visual : airframe, engine exhaust and glow, canopy glint
misc. : navigation radar, communication, countermeasures

Technology gap

"It's been a quarter of a century since we developed the B-2, and the basic tenets of how U.S. goes about designing a LO airplane have been known for at least 20 years. But when you look at foreign systems designed to stealth principles, they're still not even remotely close to what we did. ... So, the U.S. still needs to protect those things that really make a difference," A. F. Myers, Northrop then-vice president, 2006

Driving factors

Effectiveness : **precision weapon** Technology : modeling, RAM, avionics, navigation Diverse applications : air, sea, land

Aircraft combat survivability

- It is about the **effectiveness** of military aircraft contending with an enemy.
- ACS: The capability of an aircraft to *avoid (susceptibility)* or *withstand (vulnerability)* a *man-made* hostile environment (enemy air defenses or terrorist weapons).

Survivability = 1 – Susceptibility x Vulnerability

• Assessment:

1) establishing the requirements for survivability,

2) selecting and designing the specific survivability enhancement features that will meet the requirements,

3) supporting the evaluation that the final product meets the requirements, and

4) providing survivability and vulnerability data to mission and campaign models.

Ball, R. E., The Fundamentals of Aircraft Combat Survivability Analysis and Design, AIAA Education Series, 2003.

Proliferation of IR seeker missiles

IR detector MANPADS

	Mistral 1	Strela-2M	lgla	FIM-92B/C	
Country	Europe	Russia	Russia	USA	
Denne	300-	800-	500-	200-4,800m	
Range	6,000m	4,200m	5,200m		
Altitude	5-	15-	10-	0-	
	3,000m	2,300m	3,000m	3,800m	
Band	2-4/	4700	1.5-2.5/	0.3-0.4/	
μm	3.5-5	1.7-2.8	3-5	3.5	
Mach	Max 2.5	Max 1.3	> 2.0	Max 2.2	

Talk 5/24

Ball, R. E., 2003 & White, J. R., Aircraft Infrared Principles, Signatures, Threats, and Countermeasures, Naval Air Warfare Center, 2012.

Pre-SAROD Stealth Workshop

R. S. Myong, Gyeongsang National University, South Korea November 29th, 2018 - Royal Orchid Resort & Convention Centre, Bangalore, India

IR requirement in JSSG (Joint Service Specification Guide)

Azimuth angles	0°, 10°, 20°, 30°, , 160°, 170°, 180°			
Elevation angles	± 0°, 5°, 10°, 20°, 30°, 45°, 90°			
IR spectrum	High flying vehicle : 3-12 microns (3-5, 8-12)			
	Low flying vehicle : 1-15 microns (1-3, 3-5, 8-12)			
Atmosphere model	Standard atmosphere, humidity, aerosol, Sun position, cloud cover etc.			
Engine power settings	Maximum, intermediate, maximum continuous			

 Talk 6/24
 Pre-SAROD Stealth Workshop

 R. S. Myong, Gyeongsang National University, South Korea
 November 29th, 2018 - Royal Orchid Resort & Convention Centre, Bangalore, India

IR fundamentals: sources

Pre-SAROD Stealth Workshop

R. S. Myong, Gyeongsang National University, South Korea November 29th, 2018 - Royal Orchid Resort & Convention Centre, Bangalore, India

IR fundamentals: spectrum

Talk 8/24 Pre-SAROD Stealth Workshop R. S. Myong, Gyeongsang National University, South Korea November 29th, 2018 - Royal Orchid Resort & Convention Centre, Bangalore, India

IR fundamentals: continuum & discrete sources

EM radiation caused by the accelerations and decelerations of electrons Continuum (solid) radiation governed by Planck's law

Wein's law of the wavelength associated with the peak spectral radiant exitance

Cf. Intensity (W/sr): angular density of the power emitted from a source Radiance (W/cm²/sr): angular power density per unit area of the source

Discrete (line) gaseous radiation: emitted and absorbed only at discrete wavelengths associated with specific rotation and vibration frequencies CO_2 at 2.7 and 4.3 µm; H_2O at 2.7 µm.

IR fundamentals: atmospheric effect

White, J. R., 2012.

Pre-SAROD Stealth Workshop

R. S. Myong, Gyeongsang National University, South Korea November 29th, 2018 - Royal Orchid Resort & Convention Centre, Bangalore, India

Talk 10/24

Detection range relations: IR (passive) vs RF (active)

Spectrum, view angles Contrast, atmospheric effect Surface condition Frequency, angles, polarization Monostatic vs bistatic radar RAM, RAS

Definition of Jet Engine Stations

Analysis of plume infrared signatures of S-shaped nozzle configurations of aerial vehicle, *Journal of Aircraft*, Vol. 53, No. 6, pp. 1768-1778, 2016

Talk 12/24 Pre-SAROD Stealth Workshop R. S. Myong, Gyeongsang National University, South Korea November 29th, 2018 - Royal Orchid Resort & Convention Centre, Bangalore, India

- Compressible Navier–Stokes–Fourier code CFD-FASTRAN
- Complete combustion of a jet fuel (C₁₁H₂₂)
- Narrowband model (Grosshandler, 1993)
- LOWTRAN 7 model for atmospheric transmissions

Average spectral intensity: $\overline{i_{\lambda}(l)} = \frac{1}{4\pi} \int i'_{\lambda}(l) d\omega$

where $i'_{\lambda}(l) = i'_{\lambda,w}e^{-\kappa_{\lambda}(l)} + \int_{0}^{\kappa_{\lambda}(l)}i_{b,\lambda}(l^{*})\exp[-\kappa_{\lambda}(l) + \kappa_{\lambda}(l^{*})]d\kappa_{\lambda}(l^{*}), \quad \kappa_{\lambda} \equiv \int_{0}^{l}a_{\lambda}(l^{*})dl^{*}$

Analysis of plume infrared signatures of S-shaped nozzle configurations of aerial vehicle, *Journal of Aircraft*, Vol. 53, No. 6, pp. 1768-1778, 2016

Talk 13/24 Pre-SAROD Stealth Workshop R. S. Myong, Gyeongsang National University, South Korea November 29th, 2018 - Royal Orchid Resort & Convention Centre, Bangalore, India

Analysis of plume infrared signatures of S-shaped nozzle configurations of aerial vehicle, *Journal of Aircraft*, Vol. 53, No. 6, pp. 1768-1778, 2016

Talk 14/24 Pre-SAROD Stealth Workshop R. S. Myong, Gyeongsang National University, South Korea November 29th, 2018 - Royal Orchid Resort & Convention Centre, Bangalore, India

Analysis of plume infrared signatures of S-shaped nozzle configurations of aerial vehicle, *Journal of Aircraft*, Vol. 53, No. 6, pp. 1768-1778, 2016

Olympus HP Engine Specification						
Max Thrust	230N					
Pressure ratio	3.8					
Max RPM	108,500					
Max EGT	750°C					
Fuel	JP-4					

Experimental investigation of infrared signal characteristics in a micro turbojet engine, *To Appear in the Aeronautical Journal, 2019*

Talk 16/24 Pre-SAROD Stealth Workshop R. S. Myong, Gyeongsang National University, South Korea November 29th, 2018 - Royal Orchid Resort & Convention Centre, Bangalore, India

Talk 17/24

Experimental investigation of infrared signal characteristics in a micro turbojet engine, To Appear in the Aeronautical Journal, 2019

Pre-SAROD Stealth Workshop

R. S. Myong, Gyeongsang National University, South Korea November 29th, 2018 - Royal Orchid Resort & Convention Centre, Bangalore, India

Infrared signature characteristic of a microturbine engine exhaust plume, *Infrared Physics & Technology*, Vol. 86, pp. 11-22, 2017

Talk 18/24 Pre-SAROD Stealth Workshop R. S. Myong, Gyeongsang National University, South Korea November 29th, 2018 - Royal Orchid Resort & Convention Centre, Bangalore, India

Scaling laws

Bo=
$$\frac{Convetion}{Radiation} = \frac{\rho C_p L}{\sigma T^3}$$

 $N_R = \frac{Conduction}{Radiation} = \frac{\tau Bo}{Pe} = \frac{\tau k}{\sigma T^3 V}$
(τ optical thickness)

	Μ	Re	τ	Bo	N _R
nEUROn	1.30	4.64*10 ⁶	2.96	34.3	3.20*10 ⁻⁵
Micro engine	1.20	9.01*10 ⁵	0.67	1.85	1.99 *10 ⁻⁶

Infrared signature characteristic of a microturbine engine exhaust plume, *Infrared Physics & Technology*, Vol. 86, pp. 11-22, 2017

Talk 19/24 Pre-SAROD Stealth Workshop R. S. Myong, Gyeongsang National University, South Korea November 29th, 2018 - Royal Orchid Resort & Convention Centre, Bangalore, India

IR reduction: penalty and tactics

Penalties

Weight

Thrust, drag

Complexity

Back pressure increase in engine

RCS change

Lethal envelope

Flight Mach number & altitude

Burnout time & speed of missile

Tactics

Penalties when integrated in UCAV

Numerical Analysis of Thermal Flow Field According to Shape of Exhaust Nozzle of UCAV and Jet On/Off, *Journal of Computational Fluids Engineering*, Vol. 23, No. 1, pp. 77-85, 2018

Interplay of IR-RF

S-shape nozzle increasing RCS for ± 30 degree in rear direction Plate increasing RCS from side

Effects of IR reduction design on RCS of UCAV, *Journal of The Korean Society for Aeronautical and Space Sciences*, Vol. 46, No. 4, pp. 297-305, 2018

Further topics

- Extension from microturbojet to turbofan with higher thrust
- In connection with aircraft thermal management (integrated energy system analysis)
- In combination with TVC nozzle design with active flow control

Prof. S. M. Choi (Co-I), Chonbuk National University, South Korea

Prof. S. W. Baek (Co-I), KAIST, South Korea

Prof. S. P. Mahulikar, IIT Bombay, India