Physics of polyatomic gases in non-equilibrium based on the second-order Boltzmann-type kinetic theory

July 27th Fri, 2018 (8:30~9:10PM)

Rho Shin Myong

Department of Aerospace and Software Engineering
Research Center for Aircraft Core Technology
Gyeongsang National University
South Korea

Presented at 31st International Symposium on Rarefied Gas Dynamics
University of Strathclyde, Glasgow, UK
Outline

Part I

2nd-order Boltzmann-type kinetic theory: Boltzmann-based gas dynamics (BGD):

Part II

2nd-order constitutive laws for polyatomic gases

Physics of polyatomic gases in non-equilibrium via

- Topological representation of constitutive laws

- Multi-dimensional flow fields obtained by CFD based on discontinuous Galerkin method
2nd-order Boltzmann-type kinetic theory

PoF 2014, PoF 2016: Balanced closure & validation via MD

PoF 2018: Polyatomic gases (shock-vortex interaction)

Basic information can be found in the Youtube of an Indian GIAN (Global Initiative Academic Networks) Lecture (2017; IIT Kanpur; 15 Lectures)

Rarefied & Microscale Gases and Viscoelastic Fluids: A Unified Framework

https://www.youtube.com/ and search “Rarefied & Microscale Gases”

Other independent NCCR works: Multi-species extension by Ahn & Kim (SNU, Korea, JCP09)

Implicit-FVM implementation by Jiang & Zhao (Zhejiang Univ., China, 2017)

Cf. NCCR: Nonlinear Coupled Constitutive Relation
Closure-last moment method

\[\rho u = \iiint m v f(t, r, v) dv_x dv_y dv_z \]

<table>
<thead>
<tr>
<th>Molecular</th>
<th>Continuum</th>
<th>Molecular</th>
<th>Continuum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure (or Semi-) Simulation</td>
<td></td>
<td>PDE-based Approach</td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>DSMC</td>
<td>Gas-Kinetic Scheme</td>
<td>LBM</td>
</tr>
<tr>
<td>Liouville Equation</td>
<td>Boltzmann and Simplified Boltzmann</td>
<td>Method of Moments</td>
<td>Chapman-Enskog and Burnett</td>
</tr>
<tr>
<td>Microscopic</td>
<td>Mesoscopic</td>
<td>Macroscopic</td>
<td>Macroscopic</td>
</tr>
</tbody>
</table>

Breakdown of moment method: 1) when the statistical average is meaningless due to too few particles; 2) when thermodynamics is not definable.

Closure-first approach: Grad’s 13 moment method (1949) based on polynomial expansion

- Levermore method (1996) based on Gaussian (exponential) expansion

Closure-last approach: Eu’s generalized hydrodynamics (1980) based on

- Eu’s closure & equation of transfer
- NCCR (2014) based on balanced closure & equation of transfer
Boltzmann transport equation (BTE)

- A first-order **partial differential** equation with an **integral** collision term

\[
\left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla \right) f(t, \mathbf{r}, \mathbf{v}) = \frac{1}{Kn} C[f, f_2]
\]

Movement Collision (or Interaction)

Kinematic Dissipation

C[f, f_2] \sim \int |\mathbf{v} - \mathbf{v}_2| (f^* f_2^* - f_2 f_2) d\mathbf{v}_2

\[= \text{Gain (scattered into)} - \text{Loss (scattered out)} = \left(\frac{\delta f}{\delta t} \right)^+ - \left(\frac{\delta f}{\delta t} \right)^-\]

- **Maxwell’s equation of transfer** for molecular expression \(h^{(n)}\)

\[
\frac{\partial}{\partial t} \left\langle h^{(n)} f \right\rangle + \nabla \cdot \left(\mathbf{u} \left\langle h^{(n)} f \right\rangle + \left(\mathbf{c} h^{(n)} f \right) \right) - \left\langle f \frac{d}{dt} h^{(n)} \right\rangle - \left\langle f \mathbf{c} \cdot \nabla h^{(n)} \right\rangle = \left\langle h^{(n)} C[f, f_2] \right\rangle
\]
Complexity out of simplicity: conservation laws

\[\left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla \right) f(t, \mathbf{r}, \mathbf{v}) = C[f, f_2] \]

where \(\langle \cdots \rangle = \iiint \cdots dv_x dv_y dv_z \)

Differentiating the statistical definition \(\rho \mathbf{u} = \langle m \mathbf{v} f(t, \mathbf{r}, \mathbf{v}) \rangle \) with time and then combining with BTE (\(t, \mathbf{r}, \mathbf{v} \) are independent and \(\mathbf{v} = \mathbf{u} + \mathbf{c} \))

\[\frac{\partial}{\partial t} \langle m \mathbf{v} f \rangle = \left\langle m \mathbf{v} \frac{\partial f}{\partial t} \right\rangle = -\left\langle m (\mathbf{v} \cdot \nabla f) \mathbf{v} \right\rangle + \left\langle m \mathbf{v} C[f, f_2] \right\rangle \]

Here \(-\left\langle m (\mathbf{v} \cdot \nabla f) \mathbf{v} \right\rangle = -\nabla \cdot \left\langle m \mathbf{v} \mathbf{v} f \right\rangle = -\nabla \cdot \left\{ \rho \mathbf{u} \mathbf{u} + \left\langle m \mathbf{c} \mathbf{c} f \right\rangle \right\} \)

After the decomposition of the stress into pressure and viscous shear stress \(\Pi \)

\[\mathbf{P} \equiv \left\langle m \mathbf{c} \mathbf{c} f \right\rangle = p \mathbf{I} + \Pi \]

where \(p \equiv \left\langle m \text{Tr}(\mathbf{c} \mathbf{c}) f / 3 \right\rangle \), \(\Pi \equiv \left\langle m [\mathbf{c} \mathbf{c}]^{(2)} f \right\rangle \),

and using the collisional invariance of the momentum, \(\left\langle m \mathbf{v} C[f, f_2] \right\rangle = 0 \),

we have

\[\frac{\partial (\rho \mathbf{u})}{\partial t} + \nabla \cdot (\rho \mathbf{u} \mathbf{u} + p \mathbf{I} + \Pi) = 0. \]

Exact consequence of the original BTE!
Further complexity: constitutive equations

For arbitrary molecular expressions of general moment (viscous shear stress Π and heat flux Q)

$$
\rho \frac{D}{Dt} \left[\Pi \left(\equiv \left\langle m [cc]^{(2)} f \right\rangle / \rho \right) \right] + \nabla \cdot \left[\left\langle mccf \right\rangle - \left\langle mTr(ccc) f \right\rangle I / 3 \right] + \left[\left\langle mccf \right\rangle : \nabla u \right] + 2 \left[\Pi \cdot \nabla u \right]^{(2)} + 2p \left[\nabla u \right]^{(2)} = \left[\left\langle m[cc]^{(2)} C[f, f_2] \right\rangle \right]
$$

No approximation so far: exact consequence of the original BTE via Maxwell's equation of transfer
Balanced closure: constitutive equations

Conceptual inconsistency of Eu’s closure (1992)

\[
\langle m_{cccf} \rangle - \langle m\text{Tr}(ccc)f \rangle \mathbf{I} / 3 = 0 \implies \text{Vanishing heat flux}
\]

\[
\langle m_{cccf} \rangle = 0 \implies \text{Cannot be zero in general}
\]

New balanced closure with closure-last approach (2014)

2nd-order for kinematic LH = 2nd-order for collision RH

\[
\begin{align*}
\rho \frac{D}{Dt} \left[\Pi \left(\equiv \left\langle m [cc]^{(2)} f \right\rangle / \rho \right) \right] & + \nabla \cdot \left[\left\langle m_{cccf} \right\rangle - \left\langle m\text{Tr}(ccc)f \right\rangle \mathbf{I} / 3 \right] + 0 \\
+ \left[2 \left[\Pi \cdot \nabla u \right]^{(2)} \right] & + \left[2p \left[\nabla u \right]^{(2)} \right] = \left[\left\langle m_{cc} \right\rangle^{(2)} C[f, f_2] \right] \\
\frac{Du}{Dt} \cdot \Pi + Q \cdot \nabla u + \Pi \cdot C_p \nabla T & + \left[p C_p \nabla T \right] = \left[\left(mc^2 / 2 - mC_p T \right)C[f, f_2] \right]
\end{align*}
\]
Conservation laws + 2nd-order constitutive relations

Conservation laws (exact consequence of BTE)

\[
\rho \frac{D}{Dt} \begin{bmatrix}
\frac{1}{\rho} \\
\mathbf{u} \\
E_t
\end{bmatrix} + \nabla \cdot \begin{bmatrix}
-u \\
pI \\
p\mathbf{u}
\end{bmatrix} + \nabla \cdot \begin{bmatrix}
0 \\
\Pi \\
\Pi \cdot \mathbf{u} + \mathbf{Q}
\end{bmatrix} = 0
\]

In conjunction with the 2nd-order constitutive relations (CR)

\[
\rho \frac{D(\Pi / \rho)}{Dt} + 2[\Pi \cdot \nabla \mathbf{u}]^{(2)} + 2p[\nabla \mathbf{u}]^{(2)} = -\frac{p}{\mu_{NS}} \Pi q_{2nd}(\kappa_1),
\]

Navier 1st law

\[
\rho \frac{D(\mathbf{Q} / \rho)}{Dt} + \frac{Du}{Dt} \cdot \Pi + \mathbf{Q} \cdot \nabla \mathbf{u} + \Pi \cdot C_p \nabla T + C_p p \nabla T = -\frac{pC_p}{k_{NS}} \mathbf{Q} q_{2nd}(\kappa_1),
\]

Fourier 1st law

Non-hyperbolic

Implicit

\[q_{2nd}(\kappa_1) \equiv \frac{\sinh \kappa_1}{\kappa_1}, \quad \kappa_1 \equiv \frac{T^{1/4}}{p} \left(\frac{\Pi: \Pi}{\mu_{NS}} + \frac{\mathbf{Q} \cdot \mathbf{Q}}{k_{NS}} / T \right)^{1/2}\]
2nd-order theory in elementary flows

- Critical role of $q_{2nd}(\kappa_1)$ term in compression case
- Negligible role of $q_{2nd}(\kappa_1)$ term in expansion & velocity shear
 (simple shear thinning – decreasing viscosity)
A model for 1-D compression & expansion

\[\rho \frac{D(\Pi / \rho)}{Dt} + 2[\Pi \cdot \nabla u]^{(2)} + 2p[\nabla u]^{(2)} = -\frac{p}{\mu_{NS}} \Pi \left(\frac{\sinh \kappa_1}{\kappa_1} \right), \quad \kappa_1 \equiv \frac{T^{1/4}}{p} \left(\frac{\Pi : \Pi / \mu_{NS}}{k_{NS}} + \frac{Q \cdot \hat{Q}}{T} \right)^{1/2} \]

No heat flux

\[\rho \frac{D(\Pi / \rho)}{Dt} (\mu_{NS}) + [\Pi \cdot (-2\mu_{NS}) \nabla u]^{(2)} + p(-2\mu_{NS})[\nabla u]^{(2)} = p\Pi \left(\frac{\sinh \kappa_1}{\kappa_1} \right), \quad \kappa_1 \equiv \frac{T^{1/4}}{p} \left(\frac{\Pi : \Pi / \mu_{NS}}{k_{NS}} \right)^{1/2} \]

One-dimension

\[\Pi_{NS} \equiv -2\mu_{NS} [\nabla u]^{(2)} \]

\[\hat{t} \equiv \frac{t}{\mu_{NS} / p}, \quad \hat{\Pi} \equiv \frac{\Pi}{p}, \quad \Pi_{NS} \equiv -\frac{4}{3} \mu_{NS} \frac{\partial u}{\partial x} \]

\[\frac{D\hat{\Pi}}{Dt} - \hat{\Pi}_{NS}\hat{\Pi}_{NS} - \hat{\Pi}_{NS} = -\hat{\Pi} q(|\hat{\Pi}|), \quad \text{where} \quad q(|\hat{\Pi}|) \equiv \sinh |\hat{\Pi}| / |\hat{\Pi}| \]

\[t_{\text{stress}} (10^{-8} \text{ sec}) \ll t_{\text{flow}} \]

Or steady-state

\[\hat{\Pi}_{NS} + \hat{\Pi}_{NS} = \hat{\Pi} q(|\hat{\Pi}|) \]

2nd-order 1st-order 1st-order x 2nd-order

Kinematic motion Collision
2nd-order constitutive laws in compression/expansion

1-D compression and expansion

\[\Pi / p \]

Viscous stress / pressure

\[\frac{\Pi}{p} \]

Grad non-classical model (1952)

\[
q = 1 \text{ by assuming Maxwellian molecule}
\]

\[
\dot{\Pi}_{NS} + \dot{\Pi}_{NS} = \dot{\Pi} \cdot 1
\]

Singularity

Navier classical model (1822)

\[
q = \frac{\sinh(\Pi/p)}{\Pi/p}
\]

Myong non-classical model (1999, 2014)

\[
\dot{\Pi}_{NS} + \dot{\Pi}_{NS} = \dot{\Pi}q(\Pi)
\]

\[q(x) \]

\[q(0) = 1 \]

\[x \]

Velocity gradient / pressure

\[\Pi_{NS} / p \]

Expansion

Compression

Normal (linear viscosity)

0 + \(\dot{\Pi}_{NS} = \dot{\Pi} \cdot 1 \)
1-D shock result: inverse shock thickness

New 2nd-order & 2nd-order: **Best**

Navier 1st-order & 1st-order: **Reference**

Grad 2nd-order & 1st-order: **Singularity**

\[0 + \hat{\Pi}_{NS} = \hat{\Pi}_q(\hat{\Pi}) \]

Quasi-linear 1st-order & 2nd-order: **Worse** than Navier

Importance of balanced closure

Shock density thickness of argon gas

Shock temperature-density distance

2nd-order constitutive laws in velocity shear

\[
\rho \frac{D(\Pi / \rho)}{Dt} + 2[\Pi \cdot \nabla \mathbf{u}]^{(2)} + 2p[\nabla \mathbf{u}]^{(2)} = -\frac{p}{\mu_{NS}} \Pi q_{2nd}(\kappa_1),
\]

\[
\rho \frac{D(\mathbf{Q} / \rho)}{Dt} + \frac{Du}{Dt} \cdot \Pi + \mathbf{Q} \cdot \nabla \mathbf{u} + \Pi \cdot C_p \nabla T + C_p p \nabla T = -\frac{pC_p}{k_{NS}} \mathbf{Q} q_{2nd}(\kappa_1)
\]

1-D velocity shear \hspace{1cm} \text{No heat flux}

\[
\frac{D}{Dt} = \frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla = 0
\]

\[
\frac{1}{\mu_{NS}}\begin{bmatrix}
2\Pi_{xy} \Pi_{xy/NS} / 3 \\
-\Pi_{yy} \Pi_{xy/NS}
\end{bmatrix}
- \frac{1}{\mu_{NS}} \begin{bmatrix}
0 \\
p \Pi_{xy/NS}
\end{bmatrix}
= -\frac{p}{\mu_{NS}} \begin{bmatrix}
\Pi_{yy} \\
\Pi_{xy}
\end{bmatrix} q_{2nd}(\kappa_1)
\]

\[
\hat{\Pi}^2_{xy} = -\frac{3}{2} \left(1 + \hat{\Pi}_{yy} \right) \hat{\Pi}_{yy}
\]

Kinematic stress constraint due to 2nd-order coupling!

No such thing in 1st-order Navier law!

MD: Molecular Dynamics(2014)

MD
DSMC
NCCR
NSF

Rod Climbing Effect

Newtonian
Visco-elastic

31st International Symposium on Rarefied Gas Dynamics
July 23 - 27, 2018 - University of Strathclyde, Glasgow, UK

Talk 13/27
R. S. Myong, Gyeongsang National University, South Korea
Multi-dimensional CFD based on DG

Acknowledgements

Former PhDs & Postdocs:
A. Karchani (ANSYS, US), S. Singh (NTU, Singapore), H. Xiao (NWPU, China)

PhD Students:
P. Raj, O. Ejtehadi, A. Rahimi, T. Chourushi

Supported by
National Research Foundation in Korea

Convergence property

Super-parallel performance (via the rate of cost reduction) (C&F, 2017)
Two-dimensional shock structure around cylinder

Computed Mach contours over cylinder (Mach 5.48, Kn=0.2)

NCCR: Nonlinear Coupled Constitutive Relation

Monatomic, diatomic, and (linear) polyatomic gases

- Once the Stokes assumption is abandoned, an additional constitutive law of the excess normal stress Δ related to the bulk viscosity will appear:
 \[\Delta = \mu_b (\Delta \cdot \mathbf{u}). \]
- The inner structure of strong shock waves (Emanuel and Argrow 1994)
- Dilatational waves in transition in hypersonic boundary layers (Zhu et al. 2016)
Monatomic, diatomic, and (linear) polyatomic gases

- Once the Stokes assumption is abandoned, an additional constitutive law of the excess normal stress Δ related to the bulk viscosity will appear

$$\Delta = \mu_b (\Delta \cdot \mathbf{u}).$$

- The inner structure of strong shock waves (Emanuel and Argrow 1994)
- Dilatational waves in transition in hypersonic boundary layers (Zhu et al. 2016)
Boltzmann-Curtiss equation for polyatomic gases

\[
\left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla + \frac{j}{I} \frac{\partial}{\partial \psi} \right) f (\mathbf{v}, \mathbf{r}, j, \psi, t) = C [f, f_2]
\]

\[\rho \mathbf{u} \equiv \langle m \mathbf{v} f (\mathbf{v}, \mathbf{r}, j, \psi, t) \rangle\]

- \(I \) = moment of inertia
- \(j \) = angular momentum
- \(\psi \) = azimuthal angle

\[\rho \equiv \langle mf (\mathbf{v}, \mathbf{r}, j, \psi, t) \rangle\]

\[\rho E \equiv \left\langle \left(\frac{1}{2} mc^2 + H_{rot} \right) f (\mathbf{v}, \mathbf{r}, j, \psi, t) \right\rangle\]

\[\langle \ldots \rangle \equiv \int \int \int ... d\nu_x d\nu_y d\nu_z j dj d\psi d\Omega\]

\[\rho \frac{d}{dt} \begin{bmatrix} 1/ \rho \\ \mathbf{u} \\ E_t \end{bmatrix} + \nabla \cdot \begin{bmatrix} -\mathbf{u} \\ p \mathbf{I} \\ pu \end{bmatrix} + \nabla \cdot \begin{bmatrix} 0 \\ \Pi + \Delta \mathbf{I} \\ (\Pi + \Delta \mathbf{I}) \cdot \mathbf{u} + \mathbf{Q} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.
\]

- \(\Pi \) : normal stress tensor = \(-2 \mu_{NS} [\nabla \mathbf{u}]^{(2)}\)
- \(\Delta \) : excess normal stress = \(-\mu_b \nabla \cdot \mathbf{u}\)
- \(Q \) : heat flux vector = \(-k \nabla T\)

\[\Delta = \left\langle m \text{Tr} (\mathbf{c} \mathbf{c}) f / 3 - m \text{Tr} (\mathbf{c} \mathbf{c}) f^{(0)} / 3 \right\rangle, \quad p = \left\langle m \text{Tr} (\mathbf{c} \mathbf{c}) f^{(0)} / 3 \right\rangle\]
2nd-order constitutive relations for polyatomic gases

\[\Pi = \langle h^{(1)} f \rangle \quad h^{(1)} = m [cc]^{(2)} \]
\[\Delta = \langle h^{(2)} f \rangle \quad h^{(2)} = mc^2 / 3 - p / n \]
\[Q = \langle h^{(3)} f \rangle \quad h^{(3)} = \left[mc^2 / 3 + H_{rot} - m\hat{h} \right] c \]

2nd-order

\[[\hat{\Pi} \cdot \nabla \hat{u}]^{(2)} + (f_b \hat{\Delta} + 1) \hat{\Pi}_{NF} = \hat{\Pi} q_{2nd} (c\hat{R}) \]
\[\frac{3}{2} f_b \left(\hat{\Pi} + f_b \hat{\Delta} I \right) : \nabla \hat{u} + \hat{\Delta}_{NF} = \hat{\Delta} q_{2nd} (c\hat{R}) \]
\[\hat{\Pi} \cdot \hat{Q}_{NS} + (f_b \hat{\Delta} + 1) \hat{Q}_{NF} = \hat{Q} q_{2nd} (c\hat{R}) \]

1st-order

Linearization

\[\hat{\Pi}_{NS} = -2\mu [\nabla u]^{(2)} \]
\[\hat{\Delta}_{NS} = -\mu_b \nabla \cdot u \]
\[\hat{Q}_{NS} = -k \nabla T \]

Topological representation of constitutive relations is possible!
Topology of 2nd-order CR (compression/expansion)

1st-order

2nd-order

Viscous shear stress

Argon $\mu_{\text{bulk}}=0$

N_2 $\mu_{\text{bulk}}=\mu_{\text{shear}}$

CO_2 $\mu_{\text{bulk}}=2,000\mu_{\text{shear}}$
Topography of 2nd-order CR (compression/expansion)

First-order

Argon $\mu_{\text{bulk}} = 0$

N_2 $\mu_{\text{bulk}} = \mu_{\text{shear}}$

CO_2 $\mu_{\text{bulk}} = 2,000 \mu_{\text{shear}}$

Second-order

Heat flux

\dot{Q}
Trajectory of shock structure in topology of CR

Mach number = 5.0

$f_b=0.0$

$f_b=0.8$
Inverse density thickness of shock wave (nitrogen)

Symbols-

- experiment

- NSF (fb=0)
- NF (fb=0.8)
- NCCR (fb=0.8)

Bulk viscosity effect
2nd-order effect
Multi-dimensional case: shock-vortex interaction

\[
\text{Enstrophy}(t) = \int_{\partial A} \left(\Omega_z^2(x, y, t) \right) dx dy,
\]

\[
\text{Vorticity} \; \Omega_z = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}
\]
Multi-dimensional case: shock-vortex interaction

Shock Mach = 2.0
Vortex Mach = 0.8
Knudsen = 0.001

Argon
$f_b = 0$
$\gamma = 1.667$

Nitrogen
$f_b = 0.75$
$\gamma = 1.4$

Methane
$f_b = 1.33$
$\gamma = 1.289$
Multi-dimensional case: shock-vortex interaction

Macro SVI

Micro SVI

(a) Argon gas, $f_b = 0.0$
(b) Nitrogen gas, $f_b = 0.8$
(c) Methane gas, $f_b = 1.33$

Effects of diatomic and polyatomic gases on macro SVI with $M_s = 2.0, M_v = 0.8, r_i = 1000\lambda$ (top) and micro SVI with $M_s = 2.0, M_v = 0.8, r_i = 10\lambda$ (bottom): sound pressure at $t = 1000\text{ ns}$.
Dusty gas flows in Lunar landing

Dust-gas Interaction

Plume-Surface Simulation in Rarefied Condition

Erosion Modeling

Dust-gas Interaction

NCCR

DSMC

nd [m⁻³]

2.00E+23
6.32E+22
2.00E+22
6.32E+21
2.00E+21
6.32E+20
2.00E+20

Δ [m]