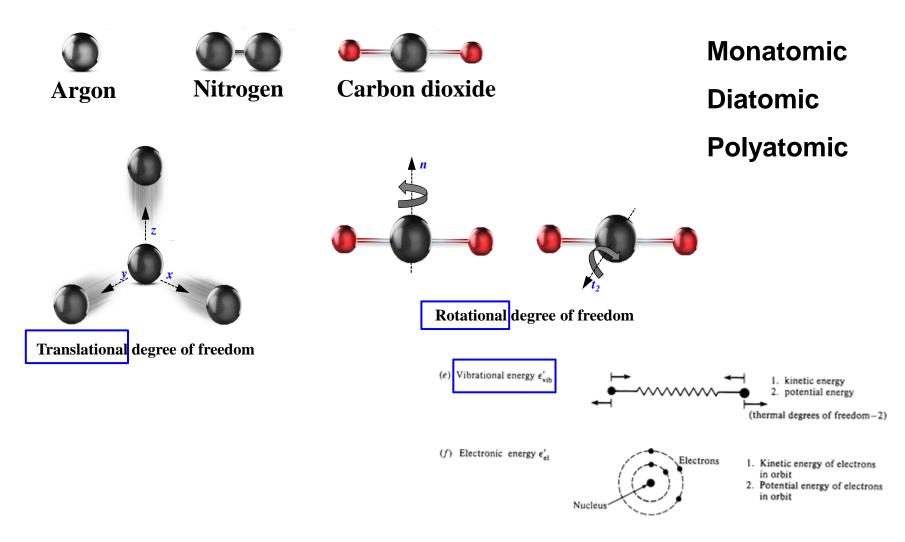
Solved and unsolved issues in the theory of shock wave structure

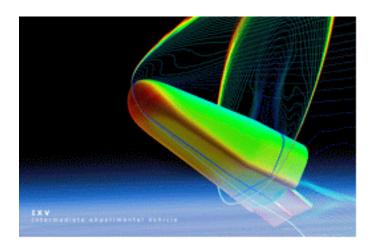
February 22nd, 2018 (3:00~3:20PM)

R. S. Myong


Professor, Department of Aerospace and Software Engineering Director, Research Center for Aircraft Core Technology Gyeongsang National University, South Korea *myong@gnu.ac.kr*

Presented at the1st NSSW Korea 2018, Seoul, South Korea

Physics of gases

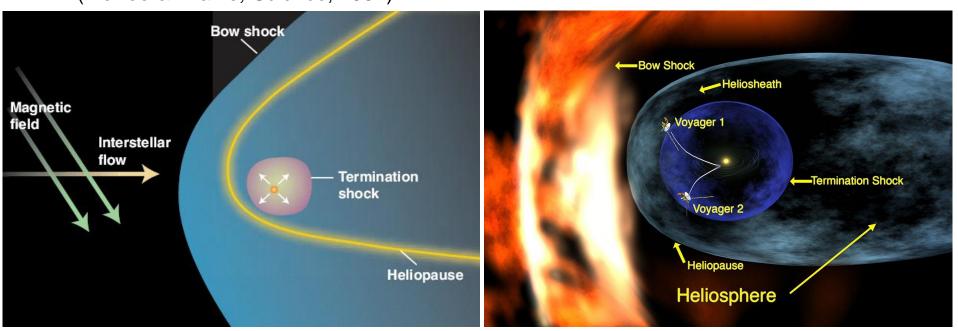

Modes of molecular energy.

R. S. Myong, Gyeongsang National University, South Korea

Talk 14-1

Shock waves in aerospace

Shock waves: a very thin surface (order of few micro-meter) where the air properties change abruptly, causing the increase of the entropy. Since the speed in the supersonic flow is beyond the speed of sound, air particles can not obtain the information of what is going on before they actually hit the solid surface. As a result, the kinetic energy of air transforms into the thermal energy, which is always irreversible process.

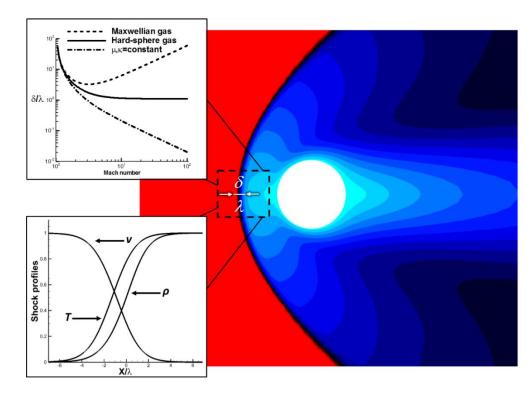


Shock waves in nature

 Interstellar shock waves: "An understanding of interstellar shock waves is crucial in determining the structure of the interstellar medium. The interstellar medium is a tenuous plasma filling the galactic disk that has a mean density of only about one particle per cubic centimeter" (McKee & Draine, Science, 1991).

Talk 14-3 R. S. Myong, Gyeongsang National University, South Korea

Physics of shock waves: inner structure


Shock waves from 1st law of thermodynamics

Rankine-Hugoniot relation (inviscid upstream and downstream) $U_t + F_x = 0 \implies s[U] = [F]$

Inner structure of shock waves from 2nd law of thermodynamics

Talk 14-4 R. S. Myong, Gyeongsang National University, South Korea

Why care about 2nd-order constitutive laws

Conventional 1st-order framework based on Navier-Stokes-Fourier laws

 $\mathbf{\Pi} = -2\eta \left[\nabla \mathbf{U} \right]^{(2)}, \ \mathbf{Q} = -k\nabla T$

1st-order constitutive laws are linear and thus remain the same for all flow situations. But they are valid in inner structure of shock waves?

2nd-order framework: major stumbling blocks for theoreticians for a long time

"... is found that the solution breaks down completely, and no solution exists for stronger shocks (specifically, at Mach number M=1.65)..." (H. Grad
? 1952)

It was solved by B. C. Eu in 1997 (*Phys. Rev. E*)

The ultimate origin of the singularity was revealed by R. S. Myong in 2014 (*Physics of Fluids*)

Talk 14-5 R. S. Myong, Gyeongsang National University, South Korea

Derivation of the 2nd-order constitutive laws

(Molecular) Boltzmann kinetic equation: 10^{23} $f(t, \mathbf{r}, \mathbf{v})$ $\left| \left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla \right) f(t, \mathbf{r}, \mathbf{v}) \right| = C[f, f_2] \qquad \begin{array}{c} \text{Nonlinear collision} \\ \text{integral} \end{array}$ Enormous reduction of information $\begin{cases} | & \rho = \langle mf(t, \mathbf{r}, \mathbf{v}) \rangle \\ \langle \cdots \rangle = \iiint \cdots dv_x dv_y dv_z \end{cases}$ $\rho \frac{d\mathbf{u}}{dt} + \nabla \cdot \left(p\mathbf{I} + \boldsymbol{\Pi} \right) = 0$

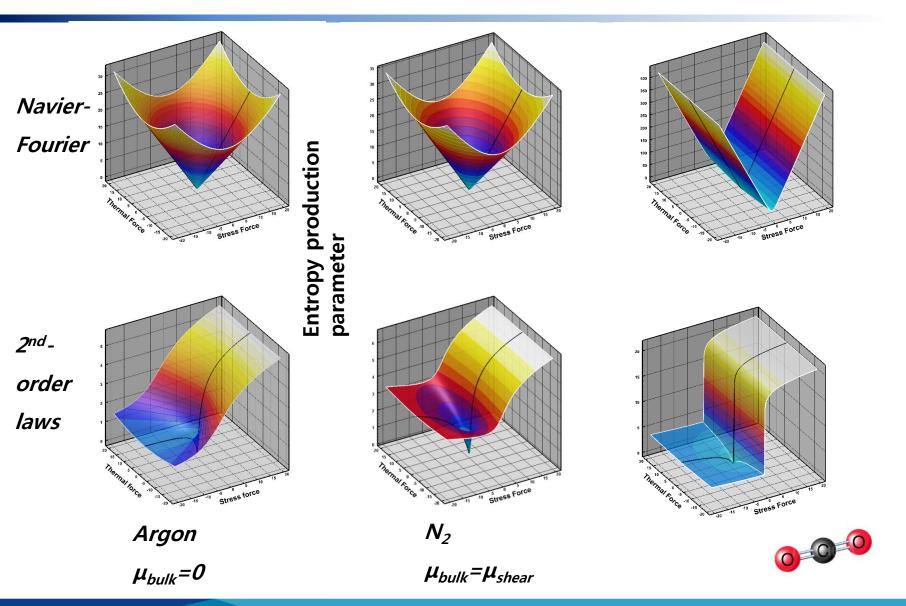
Conservation laws & constitutive equations: 13 $(\rho, \mathbf{u}, T, \Pi, \mathbf{Q}, \cdots)(t, \mathbf{r})$

Derivation of the 2nd-order constitutive laws

Conservation laws (exact consequence of BTE)

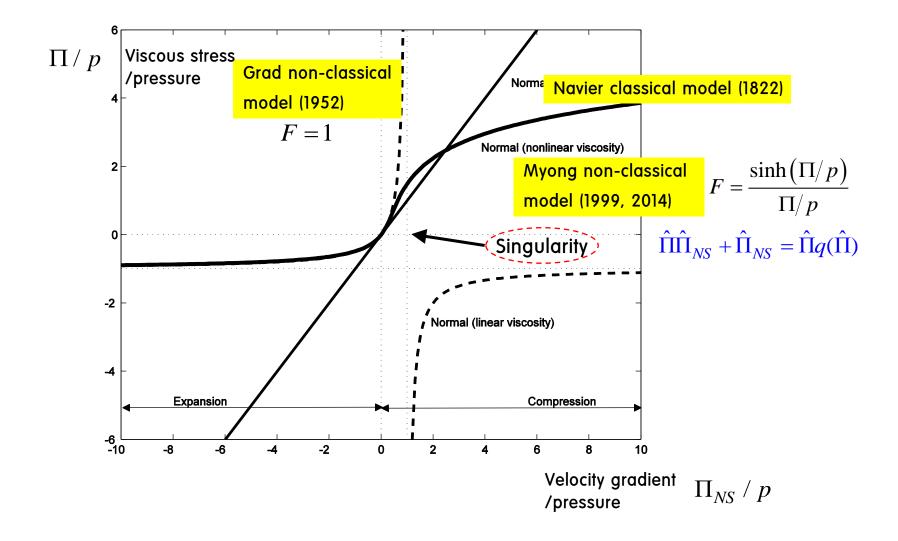
$$\rho \frac{d}{dt} \begin{bmatrix} 1/\rho \\ \mathbf{u} \\ E_t \end{bmatrix} + \nabla \cdot \begin{bmatrix} -\mathbf{u} \\ p\mathbf{I} \\ p\mathbf{u} \end{bmatrix} + \nabla \cdot \begin{bmatrix} 0 \\ (\mathbf{\Pi}) \\ \mathbf{\Pi} \cdot \mathbf{u} + \mathbf{Q} \end{bmatrix} = \mathbf{0}$$

in conjunction with the (algebraic) 2nd-order constitutive equations

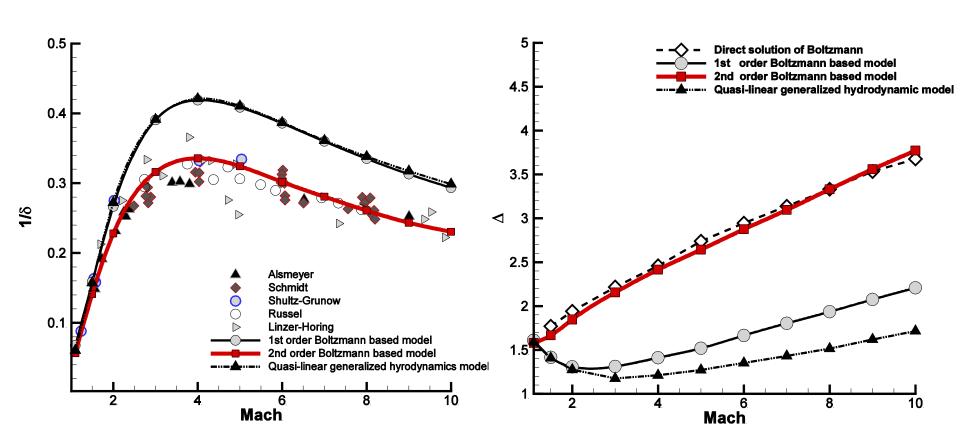

$$\rho \frac{d(\Pi \not \rho)}{dt} + 2 [\Pi \cdot \nabla \mathbf{u}]^{(2)} + 2p [\nabla \mathbf{u}]^{(2)} = -\frac{p}{\mu_{NS}} \Pi q(\kappa_1),$$
Navier 1st law
$$\rho \frac{d(Q \not \rho)}{dt} + \frac{d\mathbf{u}}{dt} \cdot \Pi + \mathbf{Q} \cdot \nabla \mathbf{u} + \Pi \cdot C_p \nabla T + C_p p \nabla T = -\frac{pC_p}{k_{NS}} \mathbf{Q}q(\kappa_1),$$
Non-hyperbolic
Implicit
$$q(\kappa_1) \equiv \frac{\sinh \kappa_1}{\kappa_1}, \ \kappa_1 \equiv \frac{T^{1/4}}{p} \left(\frac{\Pi : \Pi}{\mu_{NS}} + \frac{\mathbf{Q} \cdot \mathbf{Q} / T}{k_{NS}}\right)^{1/2}$$
Fourier 1st law

1 st

R. S. Myong, Gyeongsang National University, South Korea


Talk 14-

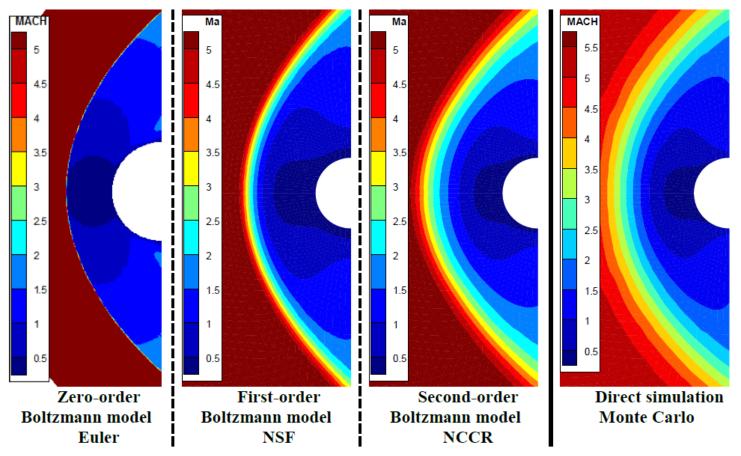
Topology of 2nd-order constitutive relations



Talk 14-8 R. S. Myong, Gyeongsang National University, South Korea

2nd-order constitutive relations: Non-Navier laws

Physical results: inverse shock thickness


Shock density thickness of argon gas

Shock temperature-density distance

(Karchani, PhD Thesis, GNU, 2017)

Talk 14-10 R. S. Myong, Gyeongsang National University, South Korea

Physical results: shock structure around cylinder

Computed Mach contours over cylinder (Mach 5.48, Kn=0.2)

(Karchani, PhD Thesis, GNU, 2017)

Unsolved issues

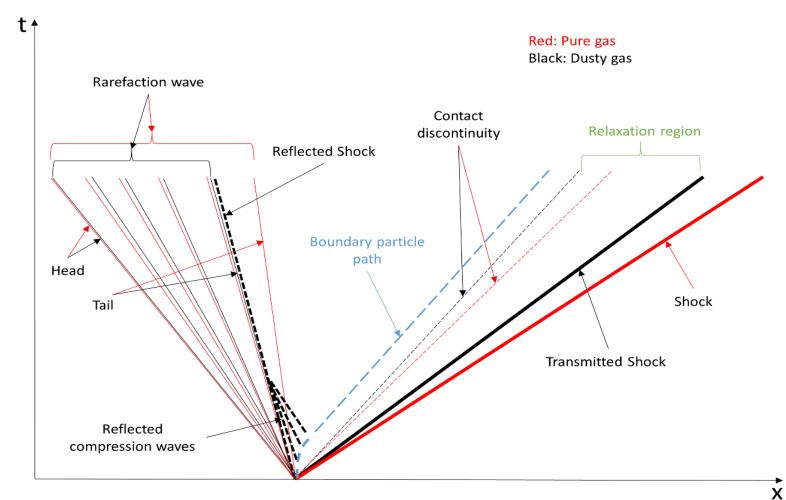
Diatomic gases: Difficulty in numerically solving large bulk viscosity case

$$\rho \frac{d}{dt} \begin{bmatrix} 1/\rho \\ \mathbf{u} \\ E_t \end{bmatrix} + \nabla \cdot \begin{bmatrix} -\mathbf{u} \\ p\mathbf{I} \\ p\mathbf{u} \end{bmatrix} + \nabla \cdot \begin{bmatrix} 0 \\ \Pi + \Delta \mathbf{I} \\ (\Pi + \Delta \mathbf{I}) \cdot \mathbf{u} + \mathbf{Q} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \Delta : \text{excess normal stress} = -\mu_b \nabla \cdot \mathbf{u}$$

Inclusion of vibrational mode: Need of developing a proper kinetic description of the coupling of rotational and vibrational modes

Inclusion of radiation

Unsolved issues


Shock inner structure in magnetohydrodynamics (MHD): Ionized gases in rarefied state under electromagnetic fields

$$\begin{pmatrix} \rho \\ \rho \mathbf{u} \\ B_{\perp} \\ E \end{pmatrix}_{t} + \begin{pmatrix} \rho u \\ \rho \mathbf{u} u + (p + \mathbf{B}_{\perp} \cdot \mathbf{B}_{\perp}/2)\mathbf{I} - B_{x}\mathbf{B}_{\perp} \\ \mathbf{B}_{\perp} u - B_{x}\mathbf{v} \\ (E + p + \mathbf{B}_{\perp} \cdot \mathbf{B}_{\perp}/2)u - B_{x}(\mathbf{B}_{\perp} \cdot \mathbf{v}) \end{pmatrix}_{x} = \begin{pmatrix} 0 \\ D_{1}\mathbf{u} \\ D_{2}\mathbf{B}_{\perp} \\ \Sigma + \kappa T \end{pmatrix}_{xx}$$
where $2\Sigma = \mu(\mathbf{u} \cdot \mathbf{u}) + \nu(\mathbf{v} \cdot \mathbf{v}) + \eta(\mathbf{B}_{\perp} \cdot \mathbf{B}_{\perp}), \quad D_{1} = \begin{pmatrix} \mu & 0 & 0 \\ 0 & \nu & 0 \\ 0 & 0 & \nu \end{pmatrix}, \quad D_{2} = \begin{pmatrix} \eta & -\chi \\ \chi & \eta \end{pmatrix}$

 \mathbf{B}_{\perp} : magnetic field

Unsolved issues

Extension to gas with solid particles (dusty gases)

Talk 14-14 R. S. Myong, Gyeongsang National University, South Korea