Pushing the Limits of Continuum Fluid Mechanics and Going beyond the Navier-Stokes-Fourier

March 30, 2011 (4:00-5:00PM)

R. S. Myong
Dept. of Mechanical and Aerospace Engineering
Gyeongsang National University
South Korea
myong@gnu.ac.kr

Presented at Mechanical Engineering Colloquium in McGill Montreal, Canada
Many thanks to

Prof. W. G. Habashi
for making this opportunity possible
and his generous support

and

Prof. Damiano Pasini, Antonella Fratino
for all the arrangements.
Introduction to Gyeongsang National University

9 Provinces in South Korea
One of the major national universities
Located in Gyeongnam province (manufacturing industrial belt)
Overview of GNU

- 3 campus, 11 colleges, 67 divisions and departments
- 23,000 students
- 730 full-time faculty members
- Founded in 1948
- Aerospace program (9 faculty; 180 undergraduates; 120 graduates)
Research areas of Aerospace Comp. Modeling Lab

Impact on the field

- Rarefied micro/nanoscale gases
- CFD
- MHD space plasmas
- Applied aerodynamics
- Aircraft survivability
- Aircraft icing

No. of papers

JCP, JFM, PoF

Amount of fund

$$$$$

Basic
Idea intensive

Application
Labor intensive
Research goal:

Develop a unified computational model for rarefied and micro- & nano-scale gases upon which others can build efficient CFD codes

http://acml.gnu.ac.kr ⇔ <Open knowledge>
Part I.

Fundamentals
Introduction to rarefied and micro/nanoscale gases

Compression-dominated
High M, low Kn

Intermediate Experimental Vehicle

Gas flows around hypersonic vehicles and plume flows
Continuous shift of continuum, transition, and free-molecular regimes
Coexistence of various regimes

Need of unified framework

Shear-dominated
Low M, high Kn

Micro and nanoscale cylinder

Gas (liquid) flow + MN solid devices
Molecular interaction between gas (liquid) particles and solid atoms
Gas (liquid) flows in thermal (trans., rot.) nonequilibrium regimes
Electrokinetics, surface tension etc.
Approaches for modeling rarefied and micro/nanoscale gases

Molecular approach
- DSMC (Direct Simulation Monte Carlo) (Bird)
- Linearized Boltzmann equation (Cercignani, Sone)
- Lattice-Boltzmann method

Continuum approach
- Chapman-Enskog: Burnett (1935) etc.
- **Moment method**: Grad (1949), Eu (1992), regularized-13 (2005)
- **Constitutive equations**: the only ingredient in the conservation laws in which the microscopic nature of gas molecules is taken into account.

Hybrid approach
- DSMC-continuum coupling (Nie 2004, Schwartzentruber 2007)
- Seamless multi-scale method: viscous stress calculated by MD (Weinan 2009)
Modeling micro and nanomechanics of fluids and rarefied gases

Top-down: the classical linear (fluid mechanics) theories can account for virtually everything about materials (fluids).

\[
\frac{D}{Dt} \begin{bmatrix} 1/ \rho \\ u \\ E_t \end{bmatrix} + \nabla \cdot \begin{bmatrix} u \\ pI + \Pi \\ (pI + \Pi) \cdot u + Q \end{bmatrix} = 0
\]

\[\Pi = -\eta[\nabla u]^2, \quad Q = -k\nabla T\]

Navier \quad Fourier

Linear uncoupled constitutive relations

Bottom-up: only a molecular-statistical theory of the structure of fluids can provide understanding of their true behavior.

A critical observation: an efficient way of including the molecular nature of gases is to develop nonlinear coupled constitutive relations but to retain the conservation laws.
Linear uncoupled Navier-Fourier equations

Navier (1822) \(\rho \frac{Du}{Dt} + \nabla p + \nabla \cdot \Pi = 0, \quad \rho \frac{D E_t}{Dt} + \nabla \cdot p u + \nabla \cdot [\Pi \cdot u + Q] = 0 \)

Fourier (1822)
\[
\Pi = -\eta \left[\nabla u \right]^2, \quad Q = -k \nabla T
\]

\[
\begin{bmatrix}
\Pi_{xx} & \Pi_{xy} \\
\Pi_{yx} & \Pi_{yy}
\end{bmatrix}
\leftarrow
-2\eta
\begin{bmatrix}
u_x - (u_x + v_y)/3 & (u_y + v_x)/2 \\
(v_x + u_y)/2 & v_y - (u_x + v_y)/3
\end{bmatrix}
\]

\(u_x \) case (compression and expansion) \(u_y \) case (velocity shear only)

\[
-2\eta
\begin{bmatrix}
2u_x/3 & 0 \\
0 & -u_x/3
\end{bmatrix}
\]

Not like \((u_x)^2\) \hspace{1cm} \text{Newtonian or linear}

\[
-2\eta
\begin{bmatrix}
0 & u_y/2 \\
u_y/2 & 0
\end{bmatrix}
\]

Uncoupled

\[
\begin{bmatrix}
Q_x \\
Q_y
\end{bmatrix}
\leftarrow
-k
\begin{bmatrix}
T_x \\
T_y
\end{bmatrix}
\]

Not like \((T_x)^2\)
Physics of rarefied and micro/nanoscale gases

\[Kn = M/Re \]

Increase of thermal non-equilibrium

Re-entry trajectory

\[M^2 / Re = O(1) \]

\[M^2 / Re = O(10^{-1}) \]

\[\Pi / p \sim Kn \cdot M \]

Main parameter

Two terms: \(Kn \)

Three terms: \(M, Kn \) (not \(Kn \) alone!)

\(\nabla f(r, v) = C[f, f_2] \)

\(\rho u \cdot \nabla u + \nabla \cdot p I + \nabla \cdot \Pi = 0 \)
Modelling of nonequilibrium gas system

Molecular (Probabilistic) \[f(t, r; v) \]

Phase Space \[\left(\frac{\partial}{\partial t} + v \cdot \nabla + a \cdot \nabla_v \right) f(t, r; v) = C[f, f_2] \]

Boltzmann (1844-1906)

\[f = \rho \theta \]

\[\beta = \frac{1}{k_B T} \]

Statistical average

\[\rho = \langle m f(t, r; v) \rangle \]

\[\rho u = \langle mv f(t, r; v) \rangle \]

\[\langle \cdots \rangle = \iiint \cdot \cdot \cdot d v_x d v_y d v_z \]

\[(\rho, u, T, \Pi, Q, \cdots)(t, r) \]

Continuum (Hydrodynamic)

\[\frac{D u}{Dt} + \nabla \cdot (p I + \Pi) = \rho a \]

Thermodynamic Space Conservation Laws

(Constitutive Relation)

Not far from LTE

Navier-Stokes-Fourier
A modified moment method [Eu, 1992]

\[\rho \equiv \langle mf(t, r; v) \rangle, \quad \rho u \equiv \langle mvf(t, r; v) \rangle, \quad \left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla + \mathbf{a} \cdot \nabla_v \right) f(t, r; v) = C[f, f_2] \]

Differentiating the statistical definition \(\rho \equiv \langle mf(t, r; v) \rangle \) with time and then combining with the Boltzmann equation

\[\frac{\partial}{\partial t} \rho = \frac{\partial}{\partial t} \langle mf(t, r; v) \rangle = \langle m \frac{\partial f}{\partial t} \rangle = \langle mC[f, f_2] \rangle - \langle mv \cdot \nabla f \rangle \]

\[\frac{\partial \rho}{\partial t} + \langle mv \cdot \nabla f \rangle = \langle mC[f, f_2] \rangle = 0 \]

\[\frac{\partial \rho}{\partial t} + \langle m \nabla \cdot (fv) \rangle - \langle mf \nabla \cdot v \rangle = \frac{\partial \rho}{\partial t} + \langle m \nabla \cdot (fv) \rangle = 0 \]

\[\frac{\partial \rho}{\partial t} + \nabla \cdot \langle mf v \rangle = 0 \]

\[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho u) = 0 \]
The modified moment method (continued)

Moment equations in vector form

\[\rho \frac{D}{Dt} \begin{bmatrix} 1/ \rho \\ u \\ E_t \end{bmatrix} + \nabla \cdot \begin{bmatrix} u \\ pI \\ pu \end{bmatrix} + \nabla \cdot \begin{bmatrix} 0 \\ \Pi \\ \Pi \cdot u + Q \end{bmatrix} = \begin{bmatrix} 0 \\ \rho a \\ \rho a \cdot u \end{bmatrix} \]

Unsteady Convection Higher-order
\[\frac{\partial}{\partial t} \begin{bmatrix} \Pi \\ Q \end{bmatrix} + u \cdot \nabla \begin{bmatrix} \Pi \\ Q \end{bmatrix} = -\nabla \cdot \psi^{(\Pi)} - \nabla \cdot \psi^{(Q)} + \psi^{(P)} : \nabla u \]

Kinematic Force Thermo. driving Dissipation
\[-\begin{bmatrix} 2[\Pi \cdot \nabla u]^{(2)} \\ C_p \Pi \cdot \nabla T + Q \cdot \nabla u + \frac{Du}{Dt} \cdot \Pi \end{bmatrix} + \begin{bmatrix} 0 \\ a \cdot \Pi \end{bmatrix} -\begin{bmatrix} 2p[\nabla u]^{(2)} \\ C_p p \nabla T \end{bmatrix} + \Lambda^{(\Pi)} + \Lambda^{(Q)} \]

\[\Pi = \langle m[cc]^{(2)} f \rangle, \quad Q = \langle mc^2 cf / 2 \rangle, \]
\[\psi^{(\Pi)} = \langle m[cc]^{(2)} cf \rangle, \quad \psi^{(P)} = \langle mccef \rangle, \quad \psi^{(Q)} = \langle mc^2 cef / 2 \rangle \]
\[\Lambda^{(\Pi)} = \langle m[cc]^{(2)} C[f, f_2] \rangle, \quad \Lambda^{(Q)} = \langle mc^2 e / 2C[f, f_2] \rangle \]
A physically motivated closure

By noting the relative importance of various terms, for example,

\[
\left| \nabla \cdot \psi^{(\Pi)} \right| < \left| \Pi \cdot \nabla u \right|^{(2)} , \left| p \left[\nabla u \right]^{(2)} \right|
\]

Kinematic Thermo. driving

one may neglect the higher-order term as an approximation.

\[
\nabla \cdot \psi^{(\Pi)} \approx 0,
\]

\[
\nabla \cdot \psi^{(Q)} + \psi^{(P)} : \nabla u \approx 0
\]

Then we have a nonlinear coupled algebraic constitutive relation (NCCR)

\[
0 = - \left[2 \left[\Pi \cdot \nabla u \right]^{(2)} \right] + \left[0 \right] - \left[2 p \left[\nabla u \right]^{(2)} \right] + \left[\Lambda^{(\Pi)} \right]
\]

\[
\begin{bmatrix}
\text{Kinematic} \\
\text{Force} \\
\text{Thermo. driving} \\
\text{Dissipation}
\end{bmatrix}
\]
A computational framework based on
NCCR

Edge based finite volume formulation in general coordinates (JCP 2004)

\[
\frac{\partial}{\partial t} \int_V U dV + \int_S F \cdot n dS = 0
\]

\[
U_{i,j}^{n+1} = U_{i,j}^n - \frac{\Delta t}{A_{i,j}} \sum_{k=1}^{N} R_k^{-1} F_k^n \Delta L_k
\]

\[
\Pi = f_\Pi (\Pi_{\text{NSF}}, Q_{\text{NSF}}, p, T), \quad Q = f_Q (\Pi_{\text{NSF}}, Q_{\text{NSF}}, p, T)
\]
NCCR property in compression-expansion and velocity shear case

\[-2\eta \left[\nabla \mathbf{u} \right]^2 \frac{\partial p}{\partial \eta} \]

\[-k \nabla T \]

Thermodynamic driving force

Algebraic NCCR

\[\Pi \]

Shear stress

Heat flux

\[\Pi / p \]

\[\Pi_{xx} / p \]

Nonlinear (non-Newtonian)

Expansion

Compression

Coupled

\[\Pi_{xx, xy} / p \]

Shear stress (Navier–Stokes)

Shear stress (monatomic NCCR)

Normal stress (Navier–Stokes)

Normal stress (monatomic NCCR)

\[-\eta du / dx / p \]

\[-\eta du / dy / p \]
Non-Fourier law by the coupling of force and shear stress

\[\hat{Q}_y = \frac{3}{3 + 2\hat{\Pi}_{xy0}^2} \left(\hat{Q}_{y0} + a\hat{\Pi}_{xy0} \right); \quad a \text{ is force} \]

\[\hat{\Pi}_{xy} \equiv \hat{\Pi}_{xy} / p \]

\[\hat{Q}_{x,y} \equiv Q_{x,y} / \left(p \sqrt{C_p T / (2 \text{Pr})} \right) \]

Non-Fourier behavior!

Fourier law

\[\hat{Q}_y = \hat{Q}_{y0} \]
Part II.

Validation
Validation I: Celebrated shock structure

Major stumbling blocks for theoreticians for a long time

“... is found that the solution breaks down completely, and no solution exists for stronger shocks (specifically, at Mach number $M=1.65$)…” (H. Grad 1952)

It was solved by B. C. Eu in 1997 (Phys. Rev. E)

How his theory works is explained here.

Graveyard of theoreticians
Validation I (continued)

Unsteady Convection Higher-order

\[\frac{\partial \Pi}{\partial t} + (u \cdot \nabla) \Pi = -\nabla \cdot \psi^{(\Pi)} - 2[\Pi \cdot \nabla u]^{(2)} - 2p[\nabla u]^{(2)} + \Lambda^{(\Pi)} \]

Comment: In steady-state case, one has to deal with 5 terms, which is really difficult juggling. Even in simple 3 ball juggling, there can be as many as 17 methods.

Key finding: Gases are *compressed rapidly* across the shock wave and so accurate treatment of *dissipation* term will be critical.

What B. C. Eu did: Assume the distribution function \(f \) in exponential form (not in usual polynomial form) and then apply the cumulant expansion method: the celebrated Eu’s *hyperbolic sine* factor.
Validation I (continued)

Essential terms are three in the right-hand side

\[0 + 0 = 0 - 2 \left(\Pi \cdot \nabla \mathbf{u} \right)^{(2)} - 2 p \left(\nabla \mathbf{u} \right)^{(2)} + \Lambda^{(\Pi)} \]

Kinematic Thermo. driving Dissipation

\[\Lambda^{(\Pi)} = -\frac{\Pi}{\eta / p} q(\kappa), \quad q(\kappa) \equiv \frac{\sinh \kappa}{\kappa} \]

where \(\kappa = \left(\frac{m k_B T}{2 \eta} \right)^{1/4} \left(\frac{\Pi : \Pi + Q \cdot Q}{kT} \right)^{1/2} \)

Cf. \(q(\kappa) = 1; \) BGK or relaxation approx.

\[C[f, f_2] \approx \frac{f^{\text{equil}} - f}{\tau} \]

Comment: No 1st-order term in the series expansion of \(q(\kappa) \) explains why the NSF approximation is so successful.

Cf. Drag polar in aerodynamics
Validation I (continued)

Before

\[
\frac{\Pi_{xx}}{p}
\]

Singularity

expansion

compression

With

\[
q(\kappa) = \frac{\sinh \kappa}{\kappa}
\]

After

singularity removed!

expansion

compression

Navier-Stokes

Grad

2nd-Burnett

3rd-Burnett

\[-\eta \frac{du}{dx}/p \]

\[\frac{\Pi_{xx}}{p} \]

\[\frac{\partial u}{\partial x}/p \]

\[\frac{\partial p}{\partial x}/p \]

\[\frac{\partial \Pi_{xx}}{\partial x}/p \]

\[\frac{\partial u}{\partial x} \cdot \frac{\partial p}{\partial x}/p \]

\[\frac{\partial \Pi_{xx}}{\partial x}/p \]
Shock density thickness for a diatomic gas versus the Mach number (o: experimental data)

Normalized temperature contours (NSF vs NCCR) in multi-species flowfield around a reentry vehicle (M=23.47, Kn=0.2238; courtesy of J. H. Ahn)
Validation II: 1-d force-driven compressible Poiseuille gas flow (velocity shear dominated; PoF 2011)

\[\varepsilon_{\text{wall}} = \frac{ah}{RT_{\text{wall}}} : \text{Richardson no.}, \quad Kn = \sqrt{\frac{\pi \eta_{\text{wall}} RT_{\text{wall}}}{2 p_{\text{reservoir}} h}} : \text{Knudsen no.} \]
Different role of $q(\kappa)$ term in velocity shear

With

\[q(\kappa) = 1 \]

\[q(\kappa) \equiv \frac{\sinh \kappa}{\kappa} \]

\[
\left(\frac{\Pi_{xy}}{p} \right)^2 = -\frac{3}{2} \left(1 + \frac{\Pi_{yy}}{p} \right) \frac{\Pi_{yy}}{p}
\]

Local kinematic stress constraint

BGK or relaxation is fairly good approximation, in stark contrast with the shock structure case!
Validation II: Fully *analytical* solution \((\text{Kn}=0.1, \varepsilon_{hw} = 0.6)\)

\[
\frac{p(S^*)}{p(0)} = 1 + \tan^2 S^*
\]

Pressure profile across channel
(NSF: blue, NCCR: cyan)

\[
\frac{p(S^*)}{p(0)} = 1
\]

\[
\text{concave}
\]

\[
T(S^*) \frac{1}{T(0)} = \sec^{3/5} S^* \left[1 - \frac{\pi \Pr_T}{816} \frac{T_w}{T(0)} \frac{\varepsilon_{hw}^2}{S_w} \frac{F(S^*)}{S^*} \right], \quad S^* \equiv \sqrt[3]{\frac{2}{3}T_w \varepsilon_{hw} S^*}
\]

\[
F(S^*) \equiv 17 \left[\frac{1}{17 \cos^{17/5} S^*} - \frac{1}{7 \cos^{7/5} S^*} - \left(\frac{1}{17} - \frac{1}{7} \right) \right]
\]

Temperature profile across channel
(NSF: blue, NCCR: cyan)
Validation II: comparison with other solutions

Pressure profile across channel

Temperature profile across channel

Capturing all the qualitative features predicted by the DSMC

Cf. DSMC (Bird), Regularized-13 (Struchtrup)
An exotic prediction: heat conduction from **cold** to **hot**

Non-Fourier behavior in NCCR

\[
\hat{Q}_y = \frac{3}{\left(3 + 2\overline{\Pi}^2_{xy_{NSF}}\right)}\left(\hat{Q}_{y_{NSF}} + a\overline{\Pi}_{xy_{NSF}}\right); \ a \text{ is force}
\]

Temperature contours (Courtesy of E. Roohi)

Heat transfer from **Cold** (center) to **hot**

Cf. \(H(t) = \sum_{bins} \Delta v \frac{N_h(v)}{N} \ln \frac{N_h(v)}{N} \) in DSMC

\(N_h(v) \): the number of particles in a histogram bin of width \(\Delta v \)
Another example of exotic prediction: lid-driven cavity 2-D gas flows (no force; DSMC; Kn=0.5)

Lid-driven cavity gases

Non-Fourier behavior in NCCR

Temperature contours
(Courtesy of E. Roohi)

H function contours

Heat transfer from Cold (center) to hot in 2-D
Part III.

New Potential Applications of the Present Framework
Loss of convergence of viscoelastic flow solutions in complex fluids (polymer solutions; rheology)

Viscoelastic fluids are complex fluids that have “memory” (the state-of-stress depends on the flow history)
Visco: friction, irreversibility, loss of memory
Elastic: recoil, internal energy storage

The high-Weissenberg number problem: A 30 year old mystery. ...All methods, without exception, were found to break down at a frustratingly low value of the Weissenberg number around We=1.

(R. Fattal, R. Kupferman 2005)
Analogy of viscoelastic flow and rarefied gases

\[\text{We} \equiv \frac{\tau}{T} \sim \left(\frac{l}{a} \right) \left(\frac{L}{u} \right) \sim \text{Kn} \cdot M \quad \text{vs} \quad \text{N}_\delta \equiv \frac{\Pi}{p} \sim \text{Kn} \cdot M \]

Upper-convected Maxwell equation derived from the stochastic model of dumbbells

Nonlinear coupled constitutive equation derived from the Boltzmann equation

Key observation: almost complete parallel with the gas dynamic problem -> on-going topic
Occurrence of the singularity in the stationary solution of continuum models of carrier transport in semiconductors

The mathematic singularity problem in the ballistic regime:

...Concerning the second effect, the spike is enhanced by a smaller mesh size, which is an indication of the occurrence of some sort of “singularity” in the stationary solution.

We remark that such phenomena is not a numerical artifact. Indeed, a similar behavior has been observed with different discretization based on kinetic schemes.

(A. M. Anile et al. 2000)
Concluding remarks

• **Pushing the limits of continuum theory:**
 - algebraic nonlinear coupled constitutive relation (NCCR)
 - persistent attack on the key problems—the shock structure problem
 - delicate balancing in juggling terms

• **Going beyond Navier-Stokes-Fourier:**
 - not easy due to no appearance of 1st order term
 - nothing taken for granted such as the possibility of heat transfer from **cold** to **hot**

• **Applicable to other unsolved issues:** defeating the high Weissenberg number problem in computational rheology and the ballistic transport of carriers in semi-conductors.
Acknowledgements

• National Research Foundation (Korea), EPSRC (UK), NASA (US)
• B. C. Eu (McGill Chemistry), E. Roohi (Ferdowsi Univ. of Mashhad), J. Reese (Strathclyde Univ.)