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Part I: Background
and Iintroduction
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Background (UH-60 main rotor)

« The design requirements in the development of complicated system
are often contradictory.

* In case of the Black Hawk (UH-60), the US army’s high-priority
requirement: air transport capability (using a C-130 cargo aircratft)
demanding the main rotor close to the fuselage

« However, the low rotor position created severe interference flow
conditions that could increase required power in forward flight
significantly. What can you do?
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Background (UH-60 main rotor)

* In order to resolve this contradictory requirement, the Sikorsky rotor
designers invented an ingenious solution; a two-position rotor
system based on a removal new part.

» The rotor shaft extender enabled the rotor location 15 inch higher
during flight, while it permitted the rotor to be lowered for air

transport.
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Background (size of vertical tail)

* In one engine-out scenario at take-off, the pilots need
enough rudder power to counter the yaw moment. Thus,
rudders are designed oversized.

« But if we can maintain laminar airflow over the rudder
through tiny sweeping jet actuators, we make the
rudder more effective, making it smaller.

« A smaller rudder creates less drag and weighs less,
which increases fuel efficiency.

This airplane wants to roll left and yaw left
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Background (new technologies)

« Many similar situations can be found in the development of
complicated system like aircratft.
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Background (winglet and bird’s formation flight)

* It Is possible to decrease the induced drag by using winglets to
redistribute the strength of the trailing vortex sheet.

« A carefully designed winglet can produce a gain in induced
efficiency (and root bending moment as well as marketing) at a
small cost in viscous drag and weight.
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nderstanding of contradictory requirements

« Contradictory design requirements arise from the nature of
multi-function, multi-disciplinary, multi-objective problem
In complex system.

 The mindset of the conductor of an orchestra is required.
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Part II: Works in GNU-ACML
(Examples of contradictory requirement)
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Aerospace Computational Modeling Lab.
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ightning Vs Ice protection

* Lightning is an atmospheric electrical phenomenon which deserves
adequate protection design of aircratft.

» The effects of lightning are classified into direct (structural damage,
fuel ignition) and indirect (interference to the electrical equipment).

« Materials with low thermal conductivity are required to minimize
the heat transfer.
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Ightning vs Ice protection

* Icing Is an atmospheric phenomenon which also deserves
adequate protection design of aircratft.

* Icing Is a key certification issue related to aircraft safety.
« Anti-icing systems: Prevent the ice from forming/adhering

* De-icing systems: Remove the accumulated ice before incurring
significant aerodynamic penalties ;

‘ -
. K 72 - #

11
© 2016 GNU ACML Gyeongsang National University, South Korea



Ightning vs Ice protection

» Hot-air anti-icing protection system: Materials with high thermal
conductivity are required to maximize the heat transfer to
prevent/remove the ice accreted on the aircraft skin.
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Lightning vs ice protection

« Multi-function in composite skin structure: lightning (copper foil),
icing (electro-thermal pad), RF stealth (low-observable structure)

Il carbon laminate
B carbon sandwich
B Other composites
B Aluminum

B mitanium

Left: bronze mesh (BM), right: expanded copper foil (ECF) Gap Treatment
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Ightning computational simulation

« ABAQUS for direct effect in an integrated fuel tank
« EMAS3D for indirect effect in whole aircraft

—200 kA

) (b) Determination of delamination area ] SImUIatlon (ABAQUS) SImUIatIOn (EMA3D)

from ultrasonic C-scan result
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itot-type air intake vs anti-icing system

» The Pitot-type air intake (with good total pressure recovery)
requires an (electro-thermal) anti-icing system.

Total pressure recovery
Distortion

Foreign object impact

Icing (ice ingestion
130 g for 2 minutes)

Bell 430: side mounted intake

Agusta A109: flush side intake Mill Mi 24: radial inflow intake
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Pitot-type air intake vs anti-icing system

« Korean Utility Helicopter (Surion) program (through Korea
Aerospace Industries Ltd.).

 Also in association with National Aerospace Laboratory of the
Netherlands (NLR; icing wind tunnel model design).
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itot-type air intake vs anti-icing system

» Korean Surion helicopter with Pitot-type dynamic intake

Air Intake

Ice detector |
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cing wind tunnel testing

Heat Exchanger System FAN System

i

8075 [

Spray Bar System

Test Section(Model Location)

Item

Specification

Test Section Size

2.35m (H) x 3.6 m (W) x

8.30m (L)
Tunnel Type Closed Circuit
Power 4.0 MW

Maximum Velocity

80 m/s (155.5 kts)

Mach Range

0.25

Temperature

-32°C

Pressure Altitude

7000 m (22,965 ft)

CIRA (Italian Aerospace Research Centre),
CAPUA, ltaly

1~2 cases / day; each case costing five
digits $ (December, 2011)
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Test model of electro-thermal anti-ice system

National Aerospace Laboratory of the Netherlands

Heater Mat(RH) Temperature Sensor

Heater Mat(
.

[Flow Suction System]

Heater Mat(MID)
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cing computational simulation

« CFD contributions to aircraft design (Boeing, 2014)
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cing computational simulation

« Validation of icing CFD (FENSAP-ICE) prediction (heat-off mode)

A: 19.27mm A: 18.81mm
lcethickness  B: 18.63mm B:1765mm A 2111mm

The upper parts of intake with largest ice accretion.
Narrow region with small ice accretion between these parts.
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Contradictory requirements for Radome

Radom with frequency-selective layers (FSS)

Frequency selective surface made
of slitted antenna elements A

Transmission

Radom is transparent for the
working frequency of the antenna

Reflecting at
threat frequencies
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RF low observability vs aerodynamic performance

« The requirements for radar stealth with low radar cross section
(RCS) and aerodynamics with low drag are contradictory;
faceted and streamlined smooth shapes.
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Simple RCS and drag optimization

« Simple combined (RCS and drag) shape optimization yields
unrealistic airfoil.
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adarabsorbing structure

« An ingenious solution to meet both requirements for radar stealth
and aerodynamics is the radar absorbing structure (RAS).
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