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Background: why kinetic methods in fluids?

(High Reynolds) fluid dynamics is difficult because: /.'\

At extremely small scales, even turbulent flow is very
simple. It is smooth and well behaved. At larger
scales, however, a fluid is subject to very few
constraints. It can develop arbitrary levels of s
complexity like the effect of turbulence on separation. il
(P. L. Roe, “Future developments in CFD,” ICAAT-GNU, May 2014)

(Low Reynolds mesoscopic) fluid dynamics is difficult because:

It involves microscopic collisional interactions among fluid
particles and their interplay with the kinematic motion of
particles in the macroscopic framework. This challenge is
vividly illustrated by the high Mach number shock singularity
problem (HMNP). (R. S. Myong, “On the high Mach number shock
structure singularity caused by overreach of Maxwellian molecules,”

Physics of Fluids, May 2014)  Rarefied, micro- & nano- gases,
viscoelastic fluids, elastic solids
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Introduction to Boltzmann-
based computational
schemes



Claude-Louis Navier

AN 5

Bust of Claude Louis Marie Henri Navier at the
Ecole Nationale des Ponts et Chaussées

Born 10 February 1785
Dijon, France

Died 21 August 1836 (aged 51)
Paris, France

Nationality French

Fields Mathematical physics

Institutions Ecole Nationale des Ponts
et Chaussées
Ecole polytechnique
French Academy of
Science

Alma mater Ecole Nationale des Ponts

et Chaussées

Doctoral advisor Joseph Fourier

Known for

du _v. (2)
pE+Vp—V(2,u[Vu] )

Navier—Stokes equations

Continuum vs molecular

Navier & Fourier
conservation
laws and
constitutive
laws (1822)

kinetic

James Clerk Maxwell

Physicist

James Clerk Maxwell FRS FRSE was a Scottish mathematical physicist.
His most notable achievement was to formulate the classical theory of
electromagnetic radiation, bringing together for the first time ... Wikipedia
Born: June 13, 1831, Edinburgh, United Kingdom

Died: November 5, 1879, Cambridge, United Kingdom

Education: University of Edinburgh, Trinity College, Cambridge, More Born
Awards: Rumford Medal
Died
0
5+V-V ft,rv)=Cl[f, f,]
. du ,
Equivalently, P V-(pl+1)=0 mass
Fields

and viscous stress IH = —24[Vu]'¥

Maxwell (1867), Boltzmann (1872)

Ludwig Boltzmann

Ludwig Boltzmann

Ludwig Eduard Boltzmann
February 20, 1844
Vienna, Austrian Empire
(present-day Austria)
September 5, 1906

(aged 62)

Tybein near Trieste,
Austria-Hungary (present-
day Duino, ltaly)

Suicide

Austria, Germany
Austrian

Physics



How BTE Is connected with continuum

Boltzmann transport equation (BTE): 1023 f(t,r,v)

Nonlinear collision
C[f’ fz] integral

(%Jrv-VJf(t,r,v)

lefer<ent|at|ng th; statistical definition p= (mf tr, v))
pou=(mvf (t,r,v)
with time () = ][] dv,dv,v,
and then combining Enormous reduction of information
with BTE du
pd—+V-(p|+H):O Still exact to BTE
t

Conservation laws & constitutive equations: 13 (p,u,T,H,Q,---)(t,r)



Boltzmann-based CFD schemes (partial list)

Basically a game of reducing the degree of freedom of BTE from
1022 to 103-1019 the level modern computers can handle

DSMC LBM Gas-kinetic Chapman- Moment
A representative  Solving BTE on Solving a Enskog method
particle to discrete discretized . , .
cover real lattice version of Assuming Ditferentiating the
: . : statistical
pac;’ncle: ;313 Introducing finite Iconserva’rlon Htrv) = definition
oraer o numbers of aws f[W(t,r), VW(t,r),v, &] .
Then describing discrete and discretized . o pu=(mi(tr.v))
the motion of velocity BGK-BTE in qndégserél{_\Eg mLo with time
the particles . an iterative |.<'. an .
via Finally replace way deriving 1¢t, 2nd, and combining
L by 15'-order 3rd with BTE
deferminisfic accurate BGK Only discretized imati
movement PDE approximations PDE of high order
and PDE of high order
stochastic
collision Need of extra BC
due to vwit,r)
No PDE

Molecular Continuum

< | | )




Boltzmann CFD schemes-continued
DSMC Gas-kinetic scheme

0
(E+V-ij(t,r,v):0

(micro-scale)

n+ n Cj+1/2 /
i . .. fox P of +— [uf . () —tf .yt dr+— dxdt
Kinematic: the collision-less i I ting paze(0)] j J
movement of molecules
of taking conservative moments:
*e* Scale 2
_:I V-V, |(f f, - ff,)dv, .5 .5 ’
ot ‘ ‘ N upp T (l,uk.z(u,; +&E)) otk g71+l
Molecular collisions down
' mass, momentum and energy :
P = J‘J‘J‘ mf (t, r, V)dVXdVdeZ (macro-scale)
I ri+ n 1 e =
Sampling L owr=w Lo j B R G SRR TR - S

Constraints: K. Xu (2014)
At < mean collision time

AX < mean free path

Particles cross less than

1 cell/timestep



Some points for Boltzmann-based schemes

continuum slip transitional | free-molecular

»

v

l. Kn vs (Kn, M)

4 Y

v

Kn 0.01 - 1 ” 10
should be replaced by

Fuoow BEGnes ok DErerest MacH Nusmper avp Beynoeps NusBer Cospiyamonsg
R

M 5!;! o) E‘fslie;
51:} K = ©{1). Cresping micro-low K = O{¢). Moderats micro-flow K = ¢*). Low M Fanno Flow

(1) K = ©(1/¢). Transonkc Free | K = O(1). Transonic micro-flow | K = O(¢). Transonic Fanno Flow
molecular flow

O(1/e) | K = O(1/¢3). Hypersonic Free- | K = O(1/c). Hypemsonic Fres- | K = O{1). Hypersonic *Fanno”
malecilar Row molecular fow [Transitional) Flow

Arkilic et al. (1997)

ll. The equation below is an exact consequence of BTE, meaning
its validity regardless of the degree of non-equilibrium.

pdu+V-( L pI+lHj:O
Y

dt 2 Re



Some points for Boltzmann-based schemes-
continued

lll. Conservation laws and boundary treatments

- A verification is possible based on the following property

1 1
V.| puu+ |l+—1I1 (=0 or F-ndS =0 at steady-state
(p FVELIRE ] 4P, y

- A challenge is the statement of C. Villani (2010 Field Medalist):

“The conservation laws should hold true when there are no
boundaries. In presence of boundaries, however, conservation
laws may be violated: momentum is not preserved by specular
reflection.”

In conservative PDE-based schemes, the nearest cell tgtth4e wall
always satisfies the conservation laws via U/ =U], ——> FAL,

Jj k=l

but it may not be true in the case of non-PDE schemes.
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CFD schemes based on the
continuum version of BTE:
the moment method (PDE)



Continuum version of BTE (Maxwell 1867)

Boltzmann transport equation (BTE): 103 Boltzmann collision
Integral

C[f.£,]| ~[lv=va|(F"f; - ff,)dv,

(§+V-ij(t,r,v)

Differentiating the statistical definition of moments <h(“) f(t, r,v)> with time

and then combining with BTE

pi(<h(n) ; >/p) +i_v_._<;r_](;1)_f_>_i_<f dh(n)>_< fC-Vh(”)> ={h™™C[ T, f2]>

dt . dt -
e
~
Non-hyperbolic Two places (not one) Still exact to BTE
Not necessarily explicit to closure

Conservation laws & constitutive equations: finite (p,u,T,H,Q,---)(t, r)



Moment methods: Grad (1949)

Harold Grad (born January 23, 1923
in New York City, died November 17,
1986) was an American applied
mathematician. His work specialized
in the application of statistical
mechanics to plasma physics and
magnetohydrodynamics.

Polynomial expansion with 3 terms
f=f® {1+%fl:[éé](” _Q'é(l—%ézﬂ

was inserted into the Maxwell's continuum version of BTE.

Contents [hide]
1 Work

2 Recognition

3 Life | 2
4 References Dr Harold Grad &l

. pi«h(”) f) /p)+V~<Ch(") f) —<f d:(tn) >—< fo-vh®) = (h®cff, 1,])

dt

In statistical mechanics he had developed in his thesis new methods for
the solution of the Boltzmann equation. Harold Grad was the founder of

the Magneto-fluid Dynamics Division of the Courant Institute and served : i n i e i Th

as its head until shortly before his death!”! From 1964 to 1967 and 1974 to Commumca tions on O the K netie GOI‘y Of Rareﬁed Gases
1977 he was a member of the Advisory Committee for Fusion Energy at pUR]" A h 'D ,a'\ I’J]’J'I I r D h[ a\T [ ] r i\'[ AT ] (‘ c;

Oak Ridge National Laboratory.® By HAROLD GRAD

Then we have (when viscous stress I = <h(2) f > h® =m[cc]”)

e,

Z[vQ]?+2[m-vu]® + 2p[vu]®|=F 1R, e
R b Hys

dt

1 P (rQ _pgm i :
where F,  poorox =1— 6B oI/ m {E(BlQ — B,"")(quadratic terms of IT: IT)

and high order term V- (ch® f ) = V-<mc[cc](2) f> ~ %[VQ](Z) .

3rd—Approx



Genesis of the high Mach number problem
(HMNP): Grad 1952

MATICS, VOL. Vv, 257-300 (1952)

. ne Pr 0 ea ane Shock Wave
By arguing that |(B® -B{)/B|<1/7, The Profile of a Steady Plane Shoc

d(I/ p) 'Z[VQ]‘zhz[n vu]?+2p[vu]? =—LmF, , .,
dt 5 | Hns

Where I:1st—Approx :1

Grad solved this equation (quadratic for left-hand side due to presence
of 2[11-vu]® while linear for right-hand side) in 1952, but found a shock
structure singularity at M=1.65 and could not figure out why.

The ultimate origin of Grad’s failure was found to be the unbalanced
closure; ignoring the quadratic term in the dissipation term by Myong in
2014.

While \(Bl(Q) —Bl(m)/Bl‘“)\ can be small near the equilibrium, it will increase
as the problem becomes away from equilibrium! So we cannot ignore it.



Clifford Ambrose Truesdell lll

Nationality
Fields

Moment methods: Truesdell (1956,1980)

Re-enforcement of Grad’s unbalanced approach

It was rigorously proven in the Maxwellian

molecule that the linear relation in the collisional

February 18, 1919 S
o g FUNDAMENTALS OF MAXWELL'S

January 14, 2000 KINETIC THEORY
(aged 80) OF A SIMPLE MONATOMIC GAS

Baltimore
American Treated as a Branch

of Rational Mechanics

Mathematics
Natural Philosophy
History of Science

C. TRUESDELL

R. G. MUNCASTER

term is an exact consequence of the original

Boltzmann collision integral by Truesdell (“onthe
pressures and the flux of energy in a gas according to Maxwell’s

kinetic theory,” Il, J. Rational Mech. Anal. 5 (1956), 55-128.)

<h<”>c:[f, f2]> - <h<”> f>

Exact

This misuse, the linear relation

of the Maxwellian molecule,
was never questioned by
practitioners in the field
until recently.



Summary of the origin of high Mach number
shock singularity: Procrustean bed

Enforcing conformity without regard to natural variation
or individuality, just as Procrustes violently adjusted
his guests to fit their bed.

In order to force the constitutive equations—not
necessarily hyperbolic—into a hyperbolic system (with
distinct eigenvalues), over-simplify the Boltzmann
collision integral by assuming the Maxwellian
molecule (which is exceptional, rather than general)

<h<“>C[f | f2]> - <h<”> f >

And this is the precious reason why the shock singularity
(originally accidental) remained unsolved for several
decades! (R. S. Myong, Phys. Fluids, 2014)

Procrustean bed

BlEL&E/® yué zhi shi ju: Cut the tiptoe in order to fit the foot into
a shoe (rather than modifying the shoe)



The constitutive theory: new balanced
closure

Then the solution to remove the HMNP is to abandon the 1st-
order accurate linear relation in dissipative collision term.

pjt(< <”>f>/p)+v (ch™ ) <f d:l(tn)>—<fc-Vh(”)>=<h(”)C[f,f2]>,where

the RH terms represent the change due to the molecular collision.

pd(H/p) —I—IV \PI-I— 2[H VU] +2p[VU](2) :_LI#Fexact
g L. __! Hys

(No approximations so far!: Approximations was deferred to the
last stage in order to minimize accumulated errors.)

Then, when 2"d-order balanced closure is applied; we have

d(Izlt/p)+ _d_+2[11 vul® +2p[vu]® =— Tq 2nd-order

Only remaining task is to determine F

nothlng else!

2nd- order’



The constitutive theory: Exponential form and
2"d law of thermodynamics

Any 2"d-grder expression can basically be used for the
nonlinear factor, but the hyperbolic sinh form, originally
derived by B. C. Eu in 80-90s, was found adequate.

Key ideas are; exponential canonical form, consideration of
entropy production o, and non-polynomial expansion
called as cumulant expansion.

By writing the distribution function f in the exponential form
1 = 1

f=exp|-g| =mc*+> XMh™W N ||, f=—,
|43+ 5 |

o=k (In f C[f, f2]>=%i><‘”)<h<”)0[f’ f.]),

a thermodynamically-consistent constitutive equation, still exact to BTE, can be derived;

pd(H/p) IV \P(H)H_ 2[1‘[ Vu] +2p[VU](2) _ ﬂlg ZR(Zl)X(D (+),K§+), )

o | S




The 2nd-order constitutive theory:
sinh nonlinear form

The simplest closure of LH term in next level to the linear Navier-
Fourier theory is V- ¥ =0,

while the 2"d-order closure of RH term is RZVX{Pq(x™). Then

d(Ix/
p (dt '0)+2[H-Vu](2)+2p[Vu](2) =—Lll‘q(zc1),

HNs

sinhag | _ (mkg)” T1’4[H:H+Q.QIT

K
HNs NS

q(Kl) = K, \ﬁd D

This new 2"d-order constitutive equation beyond the two-
century old Navier-Stokes equation, of course, recovers NS

1/2
J . Implicit!

2p[vu]® =——_11, and reduces to an algebraic equation in
HNs steady-state (also assuming 1-D)

. A . . . A 1 ~
MMMy — g = —Hq(c‘H‘)(: —H—;H(Cl‘[)z —gn(cn)4 _j



NCCR: Nonlinear Coupled Constitutive Relation

6 T T T T I I T T T
I1/ P Viscous stress I
/pressure Grad non-classical | : Navier classical model (1822)
4 model (1952) . -
I
F=1 a :
L o Myong non-classical - sinh (‘H‘/p)
g, model (1999, 2014) a
j/p
O [ t—
o Singularity
. L--T T T
2 . . 4 .
: '
E 1
: '
S
4 | Gaseous B Gaseous .
expansion S compression
< > P
/ . I
6 1 1 1 I 1 1 1 1 1
-10 -8 -6 -4 -2 0 2 4 6 8 10
The singularity due to unbalancing does not Velocity gradient 17/ p
/pressure

occur in expansion flow, since the sign of
guadratic term is opposite.



NCCR: shear-dominated flow

2 T I I
1/ D Viscous stress Navier classical
15 /pressure model (1822)
Shear (NS)
Myong non-classical
i model (1999, 2014}
Shear (nonlinear viscosity)
0.5 -
Normal (NS) Shear (linear v;co-si?y) ----
o Grad non-classical ~]
-~ model (1952)
05 |- .
Normal (nonlinear viscosity)
(0 N A Normal (inear viscosity) -~ |
15 - .
_2 | | | | | | | |
10 -8 -6 -4 -2 0 2 4 6 8 10
The singularity due to unbalancing does not occur Velocity gradient 1 0
in velocity shear flows, since the high order /pressure NS

nonlinear effects are cancelled under the
constraint of the asymptotic behavior.



The DG'NCCR CFD SCheme Hyperbolic

(inviscid)
Conservation laws (exact 4117 -u 0
consequence of BTE) Pl Y +V-pl|pV] I |=0
= | pu_ IT-u+Q |

in conjunction with the 2"d-order constitutive equations

d af/p) (2) P
2 vu]” 4 2p[vu]” = — (). Non-hyperbolic
NS c Implicit
d(Q/ du P
o, (Q/p) +— -M+Q-Vu+M-C VT +C_ pVT =-—=Qq(x,).
dt dt Ky s
Thermodynamic Shear stress
driving force Heat flux
SRy ](:) . Nonlinear Coupled .
2 Vu "l Constitutive Relation| I
—kNT ./, —
. Icp_f JIT-J O - c,T
Y 2pr Y 2pr
; i1
i+1/2
Hi"'l-":lN&F‘ = =212 [ u:|(g+1 2 Hi+1"":3NCCR :jﬁ(HHl’::MF'Q3+1-’"3ng‘pi+1..-"3-T£+1.-"3)
Qz’—i—l..-"'lN&F ’T‘z+1..-';(vr)z+1.: 2 Qi+1-"':3NCCR :fQ(Hg‘H;’;MF -Qi—i-l_.-"'lNSF-Pi+1..-"3j:i+1..-"3)



The DG-NCCR CFD scheme

Conservation laws

o\U+V-FE

nv

(U)+V-F, (U,VU)=0

VIS

Discretization in mixed (hybrid) form ( include T°)
{ S—T°VU =0

oU+V-F  (U)+V-F,(US)=0

nv

NSF model (Ha Q) = fIinear(S(U))
NCCR model (H, Q)NCCR = 1:non-linear(S(U)’ p’ T)

U, (X,t) = iu; (1)@ (x), Sn(x1) :ZK:S} (t)e' (x)

jsgodv +jTSV¢Udv jT oU-ndT =0,

%jugodV—jvgoF dV+j¢ AT = [ VoF dV+j¢ s -NAC =0
| | I

nv vis



The DG-NCCR CFD scheme

Modal basis function proposed by Dubiner for triangular element
Boundary (dl) integrals replaced by fluxes
The Lax-Friedrichs (LxF) flux for inviscid terms

Fiv1 - NX~ hinvl(U_’ U*,nx) N %[Fi”"l(u_)-i_ Fi”V1(U+)_ C(U+ - U_)i”VJ’

|
LA
M

Central flux for viscous terms (Bassi and Rebay 1997)

_ a.
where C = max[u ‘+WS, u’

Limiter proposed by K. Kontzialis et al. in 2013

Semi-discrete form resolved by explicit Runge-Kutta time integration
oU
L—=R(U)
ot



Results: hypersonic case; M=5.48, Kn=0.5

NCCR NSF Computing time

-1 T T T T T T T T T T

Ma=5.48 Kn=0.5 1
4L NSF NCCR .

Residual (Log

7 . 1 . 1 . 1 . 1 . 1 .
0 1000 2000 3000 4000 5000 6000

Iteration

Le, N. T. P, Xiao, H., Myong, R. S., A
triangular discontinuous Galerkin method
for non-Newtonian implicit constitutive

DSMC DSMC models of rarefied and microscale gases,

Journal of Computational Physics, Vol.
Pressure 273, pp. 160-184, 2014.




Results: hypersonic case; M=5.48, Kn=0.5

NCCR | NSF NCCR NSF

0000000000000 O -
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DSMC DSMC DSMC DSMC

Temperature Mach number
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Results: low Mach no. case; M=0.1, Kn=0.1

Density



NSF

Results: airfoll case; M=2.0, Re=106
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Part Ill. Ongoing topic

Secret of Boltzmann’s success and
pushing its boundary
(gas to elastic solid):
A unified theory for continuum
media

R. S. Myong, In Review, 2015
“On the high Weissenberg number singularity in the Maxwell-Oldroyd
model of viscoelastic fluids”



Cumulant expansion method-|

I-th moment of the distribution function and the moment-generated
function (x being the non-equilibrium variables) are

<x' > :jx' f (x)dx, <e“> :je“ f (x)dx

Then we have o

()= 375 ) 3o o

=0 =1

K| :{(ﬂlln@“ﬂ sk =(X), & :<x2>—(x>2,--- (mean, variance)

<(:)X>polynomica| :1+<X>+%<X2>+§<X3>+---,

asgarger] _ [0 {000

<ex >cumu|ant ¢
(D2 s =093
( (e)- <e—x>) /2' _ e(zll(<xz>‘<x>2)+"'j [e(<X>+---) _e(—<X>+---)}/2 ~sinh ()

cumulant




Cumulant expansion method-I|

Therefore, the ratio of the cumulant expansion to the polynomial
expansion becomes

(<ex>_<ex>)/2:|cumulant _sinh{x) TR
(<ex>—<e_x>)/2} (x) 3! 51

polynomial

The factor, sinh(x)/(x) , is responsible for removing the shock
singularity of the moment method and can handle transitional (and
even free-molecular in cavity flow as high as Kn=6.71) flow.

Cumulant expansion: E. Meeron, J. Chem. Phys. 27, p. 1238, 1957.
It explicitly considers terms of all orders in the perturbation expansions.

Gain — Loss = <ex>—<e_x> =sinh — Secret of Boltzmann’s success



R

arefied
shock
structure

Gaseous compression

Low p

High p

Gas particle

!

High Mach number problem

Viscoelastic
complex - || -
i fluids " Pz

A4

Polymer extension

Bead-Spring model

High Weissenberg number problem



The head and tail of a coin: exact analogy

Fluids Viscoelastic (HWNP) in non-equilibrium
category Viscoelastic stress (HMNP)

Conserva-

: Du Du
tion laws - . —T) = _ . —
th+V (pl-7)=0 th+V (pl+1I1)=0

Constitutive E—[(Vu)T1,-+1,-Vu:|—ﬁ(VuT +Vu) p D(I/p) +2[1-vu]® + p(Vu" +Vu)
equations Dt A 2L

1 .
= —%r for the Maxwell-Oldroyd model = —mﬂ for Maxwellian molecule
Parameters 1 7, / P
Wissenberg M?/Re

Resolving the HMNP automatically solves the HWNP.

Why analogy? Because all media follow two simple actions at a
molecular level: movement and interaction among particles!



Thank you for your attention.



