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Background: why kinetic methods in fluids? 

(High Reynolds) fluid dynamics is difficult because: 

(Low Reynolds mesoscopic) fluid dynamics is difficult because: 

At extremely small scales, even turbulent flow is very 

simple. It is smooth and well behaved. At larger 

scales, however, a fluid is subject to very few 

constraints. It can develop arbitrary levels of 

complexity like the effect of turbulence on separation. 

(P. L. Roe, “Future developments in CFD,” ICAAT-GNU, May 2014) 

It involves microscopic collisional interactions among fluid 

particles and their interplay with the kinematic motion of 

particles in the macroscopic framework. This challenge is 

vividly illustrated by the high Mach number shock singularity 

problem (HMNP). (R. S. Myong, “On the high Mach number shock 

structure singularity caused by overreach of Maxwellian molecules,” 

Physics of Fluids, May 2014) Rarefied, micro- & nano- gases, 

viscoelastic fluids, elastic solids 



Part I. 

 

Introduction to Boltzmann-

based computational 

schemes 



Continuum vs molecular 
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How BTE is connected with continuum 
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Nonlinear collision 

integral 

Still exact to BTE 



Boltzmann-based CFD schemes (partial list) 

Basically a game of reducing the degree of freedom of BTE from 

1023 to 103 -1010, the level modern computers can handle  

DSMC LBM Gas-kinetic Chapman-

Enskog 

Moment 

method A representative 
particle to 
cover real 
particles in 
order of 1013 

Then describing 
the motion of 
the particles 
via 
deterministic 
movement 
and 
stochastic 
collision 

No PDE 

Solving BTE on 
discrete 
lattice 

Introducing finite 
numbers of 
discrete 
velocity 

Finally replace 
by 1st-order 
accurate BGK 

Solving a 
discretized 
version of 
conservation 
laws 

and discretized 
BGK-BTE in 
an iterative 
way 

Only discretized 
PDE 

Assuming  

 

 

and inserting into 
BGK-BTE and 
deriving 1st, 2nd, 
3rd 
approximations 

PDE of high order 

Need of extra BC 
due to 
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Boltzmann CFD schemes-continued 

DSMC 

( , , )

Sampling
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( , , ) 0

Kinematic: the collision-less 

movement of molecules
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Constraints:

t < mean collision time

 < mean free path

Particles cross less than 
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Gas-kinetic scheme 

K. Xu (2014) 



Some points for Boltzmann-based schemes 
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I. Kn vs (Kn, M)  

II. The equation below is an exact consequence of BTE, meaning 

its validity regardless of the degree of non-equilibrium.  

should be replaced by  

Arkilic et al. (1997) 



Some points for Boltzmann-based schemes-

continued 

2
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III. Conservation laws and boundary treatments  

- A verification is possible based on the following property  

- A challenge is the statement of C. Villani (2010 Field Medalist): 

“The conservation laws should hold true when there are no 

boundaries. In presence of boundaries, however, conservation 

laws may be violated: momentum is not preserved by specular 

reflection.” 

In conservative PDE-based schemes, the nearest cell to the wall 

always satisfies the conservation laws via  

     but it may not be true in the case of non-PDE schemes. 
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Part II. 

 

CFD schemes based on the 

continuum version of BTE: 

the moment method (PDE) 



Continuum version of BTE (Maxwell 1867)  
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Moment methods: Grad (1949) 
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Genesis of the high Mach number problem 

(HMNP): Grad 1952 

By arguing that   
( ) ( ) ( )

1 1 1( ) / 1/ 7,QB B B  

Grad ignored the quadratic terms in the dissipative collision term  
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Grad solved this equation (quadratic for left-hand side due to presence 

of               , while linear for right-hand side) in 1952, but found a shock 

structure singularity at M=1.65 and could not figure out why. 
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The ultimate origin of Grad’s failure was found to be the unbalanced 

closure; ignoring the quadratic term in the dissipation term by Myong in 

2014. 

 

While                           can be small near the equilibrium, it will increase 

as the problem becomes away from equilibrium! So we cannot ignore it. 
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Moment methods: Truesdell (1956,1980) 

Re-enforcement of Grad’s unbalanced approach  

( ) ( )
2[ , ]n n

Exact
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It was rigorously proven in the Maxwellian 

molecule that the linear relation in the collisional 

term is an exact consequence of the original 

Boltzmann collision integral by Truesdell (“On the 

pressures and the flux of energy in a gas according to Maxwell’s 

kinetic theory,” II, J. Rational Mech. Anal. 5 (1956), 55–128.)   

This misuse, the linear relation 

of the Maxwellian molecule, 

was never questioned by 

practitioners in the field 

until recently. 



Summary of the origin of high Mach number 

shock singularity: Procrustean bed 

Procrustean bed 

Enforcing conformity without regard to natural variation 
or individuality, just as Procrustes violently adjusted 
his guests to fit their bed. 

In order to force the constitutive equations—not 
necessarily hyperbolic—into a hyperbolic system (with 
distinct eigenvalues), over-simplify the Boltzmann 
collision integral by assuming the Maxwellian 
molecule (which is exceptional, rather than general) 

刖趾適屨  yuè zhǐ shì jù: Cut the tiptoe in order to fit the foot into 

a shoe (rather than modifying the shoe) 

( ) ( )
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And this is the precious reason why the shock singularity 
(originally accidental) remained unsolved for several 
decades! (R. S. Myong, Phys. Fluids, 2014)  



The constitutive theory: new balanced 

closure 

Then the solution to remove the HMNP is to abandon the 1st-

order accurate linear relation in dissipative collision term.   
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(No approximations so far!: Approximations was deferred to the 

last stage in order to minimize accumulated errors.) 
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Then, when 2nd-order balanced closure is applied; we have 
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Only remaining task is to determine F2nd-order; nothing else! 



Any 2nd-order expression can basically be used for the 

nonlinear factor, but the hyperbolic sinh form, originally 

derived by B. C. Eu in 80-90s, was found adequate. 

Key ideas are; exponential canonical form, consideration of 

entropy production σ, and non-polynomial expansion 

called as cumulant expansion. 

The constitutive theory: Exponential form and 

2nd law of thermodynamics 
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The 2nd-order constitutive theory: 

sinh nonlinear form 

The simplest closure of LH term in next level to the linear Navier-

Fourier theory is  

while the 2nd-order closure of RH term is                        Then 
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This new 2nd-order constitutive equation beyond the two-

century old Navier-Stokes equation, of course, recovers NS  
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Grad non-classical  

model (1952) 

Myong non-classical 

model (1999, 2014) 

Navier classical model (1822) 

Gaseous 
compression 

기체팽창 

Velocity gradient 
/pressure 

Singularity 

Gaseous 
expansion 

Viscous stress 
/pressure 

Π /NS p

/ p

NCCR: Nonlinear Coupled Constitutive Relation 

The singularity due to unbalancing does not 

occur in expansion flow, since the sign of 

quadratic term is opposite.  
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 sinh p

F
p








Grad non-classical  

model (1952) 

Myong non-classical 

model (1999, 2014) 

Navier classical  

model (1822) 

Velocity gradient 
/pressure 

Viscous stress 
/pressure 

Π /NS p

/ p

NCCR: shear-dominated flow 

The singularity due to unbalancing does not occur 

in velocity shear flows, since the high order 

nonlinear effects are cancelled under the 

constraint of the asymptotic behavior.  



The DG-NCCR CFD scheme 

 Conservation laws (exact 

consequence of BTE) 
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Conservation laws 
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 Discretization in mixed (hybrid) form ( include Ts ) 
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NSF model (П, Q) = flinear(S(U))   

NCCR model (П, Q)NCCR = fnon-linear(S(U), p, T) 

The DG-NCCR CFD scheme 
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Modal basis function proposed by Dubiner for triangular element 

Boundary (∂I) integrals replaced by fluxes 

The Lax-Friedrichs (LxF) flux for inviscid terms 
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The DG-NCCR CFD scheme 

Central flux for viscous terms (Bassi and Rebay 1997) 

Limiter proposed by K. Kontzialis et al. in 2013 

Semi-discrete form resolved by explicit Runge-Kutta time integration 
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Results: hypersonic case; M=5.48, Kn=0.5 
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Iteration

Ma=5.48 Kn=0.5 

NSF                                          NCCR

Computing time 

Le, N. T. P., Xiao, H., Myong, R. S., A 

triangular discontinuous Galerkin method 

for non-Newtonian implicit constitutive 

models of rarefied and microscale gases, 

Journal of Computational Physics, Vol. 

273, pp. 160-184, 2014. 



Results: hypersonic case; M=5.48, Kn=0.5 

Temperature Mach number 
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Results: low Mach no. case; M=0.1, Kn=0.1 
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Results: airfoil case; M=2.0, Re=106 
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Part III. Ongoing topic 

 

Secret of Boltzmann’s success and 

pushing its boundary 

(gas to elastic solid): 

A unified theory for continuum 

media 

R. S. Myong, In Review, 2015 

“On the high Weissenberg number singularity in the Maxwell-Oldroyd 

model of viscoelastic fluids” 



Cumulant expansion method-I 

l-th moment of the distribution function and the moment-generated 

function (x being the non-equilibrium variables) are 
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Cumulant expansion method-II 

Therefore, the ratio of the cumulant expansion to the polynomial 

expansion becomes  

 

 
2 4cumulant

polynomial

/ 2
sinh 1 1

1
3! 5!/ 2

x x

x x

e e
x

x x
xe e








    



The factor,                   , is responsible for removing the shock 

singularity of the moment method and can handle transitional (and 

even free-molecular in cavity flow as high as Kn=6.71) flow. 

sinh x x

Cumulant expansion: E. Meeron, J. Chem. Phys. 27, p. 1238, 1957. 

It explicitly considers terms of all orders in the perturbation expansions. 

Gain – Loss =                        = sinh  →  Secret of Boltzmann’s success  
x xe e
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The head and tail of a coin: exact analogy 

Resolving the HMNP automatically solves the HWNP. 

Why analogy? Because all media follow two simple actions at a 

molecular level: movement and interaction among particles! 



Thank you for your attention. 


