GIAN Course on
Rarefied & Microscale Gases and Viscoelastic Fluids:
a Unified Framework

Lecture 7
Method of Moment, 2nd Law of
Thermodynamics, Cumulant Expansion,
and Balanced Closure

Feb. 234 ~ March 2nd, 2017

R. S. Myong
Gyeongsang National University
South Korea



Content

.  Method of moment

Il. 2nd law of thermodynamics

lll. Cumulant expansion

V. Balanced closure

GIAN Lecture 7-1 Rarefied & Microscale Gases and Viscoelastic Fluids: a Unified Framework

R. S. Myong, Gyeongsang National University, South Korea Feb. 23 - March 2, 2017 - lIT Kanpur, India



|. Method of moment

Boltzmann transport equation (BTE): 1023 f(t,r,v)

Nonlinear collision
C[f’ fz] integral

(%-I—V'ij(t,r,V)

D|ffer<ent|at|ng th;e statistical definition o= (mf . r,v))
pou=(mvf (t,r,v)
with time < ' > = ” -+~ dv,dv, dv,
and then combining Enormous reduction of information
with BTE du

pE+V-( pl+1II)H0

Conservation laws & constitutive equations: 13 (p,u,T,H,Q,---)(t,r)
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|. Method of moment

%)
(aJrv.vj f(tr,v)=C[f,f,]

Differentiating the statistical definition pu = (mvf (¢, r, v)) with time and
then combining with BTE (t,r, v are independent and v = u +c)

2 )= ()90 ) (i 1)

Here —(m(v-Vf)v)=-V-(mwf)=-V-{ puu+(mecf )|

After the decomposition of the stress

P =(mccf ) = pl +1II where p = (mTr(cc) f /3), T =(m[cc]® f),

and using the collisional invariance of the momentum, (mvC[f, f,])=0,
we have

d(pu)
ot

+V-(puu+ pl+1)=0. Exact consequence of the original BTE!
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|. Method of moment

The same for the heat flux, Q =(mc?cf /2), with the derivation of

the energy conservation law.

In fact, this procedure can be generalized for arbitrary molecular expressions

of general moment h("

§<h(“) f >+V-(u <h(”) f >+<Ch(n) f >)—< f %h(n)>—< fC‘Vh(n)> - <h(n)C[f ! f2]>

For h® = [mcc](z) , the constitutive equation of the viscous shear stress IT = <m [cc](z) f >

d(I/ p)
S

P = (meecf ) —(mTr(cee) f)1/3.

+ v 2m-vu]® + 2p[vu]® = (hOCrf, £,]),

Again exact consequence of BTE

No approximation introduced so far!

GIAN Lecture 7-4 Rarefied & Microscale Gases and Viscoelastic Fluids: a Unified Framework

R. S. Myong, Gyeongsang National University, South Korea Feb. 23 - March 2, 2017 - lIT Kanpur, India



|. Method of moment

§<h(n) f >+V-(u<h(“) f )+ (ch™f >)—<f %h(“)>—< fe-vh(®)=(hC[f, f,1])

For h® = (m02 /2-mC,T )c, the constitutive equation of the heat flux Q = <mcch /2>

(assuming J = (mcf ) = 0 in monatomic gas)

p%+v-‘1’@) +(mcccf).Vu+i—f.H+Q-Vu+H.CpVT +pC, VT

=<h(3)C[f, f2]>, Q) z<mczccf /2>—CpT(p| +10).
Again no approximation!

This critical fact can not be found on codified textbooks!

This constitutive equation was not presented in Grad’s 1949 work, since his 13-
moment closure was already in place. In fact, to the best of my knowledge, it

was never derived explicitly until B. C. Eu (1992).
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|. Method of moment

In the derivation of constitutive equation of heat flux, the following relations are
used
(h@f)=Q-c,T3,

<ch(3) f > . <c(m02 /2—mC,T )cf > . <mczccf /2>—CpTP,

<f §h<3>> :<f Q(mczc/2)>—<f Q(cpT)mc>—<mfcpT @>=—a—“-P—pE| e
ot ot ot ot/ ot ot

—J%(CPT)erCpTaa—l::—@a—l:-H—Jg(CpT),

(fu-vh@) = < fu-v(me%c/ 2)>—<mfu v (cpTe))=( fme?u-ve/s 2)+( fm(u-ve?)e/ 2)
~(mf (u-VC,T )c)~ (mfC,Tu-Vc) = —pEu-Vu-u-Vu-P-J(u-VC,T)+ pCyTu-Vu,
(fe-vh@®) = < fe-v (me?c/ 2)>—<mfc-V(CpTc)> = (fme?c-ve/2)+( fm(c-ved)e/ 2)
~(mf (c-VC,T )e)—(mfC,Te-Ve) = -Q-Vu-y ) . vu-P-VC T +C,TI-Vu,

") = (mecef ), pEz<mc2f /2>, C,T=p/p+E, P=pl+IL
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|. Method of moment

366 HAROLD GRAD

An alternative form of (13) is

a8 1 a8,
{—?El—[—“*'(u;p” Hfr___a g,

dx, dr, 3 7 ax,
&uj Ju; 2 o,
(5.15) F P Gy T Bir gy, g b P

i‘tﬁ a‘u._g 2 au) — Fm
+p(6:1:,- ar: 33 Jii

The moment equations (13), (14), and (15) are exact; to reduce them to third
order, Q;;:., must be replaced by its third erder equivalent from ai}i, = 0 (ef.
equation (4.11)),

Qiiir = RT(’P-‘:‘ Bre + Puibir + Pirdir + Pidi; + Pirbi -+ DiBig)
(5.16)
-+ 'PHT(Buﬁh + 8.8, + 5ir3ii:];
also, J'2' and J{) are replaced by their values from equation (4.32) and the

approximation (11). Adding the conservation equations for completeness, we
have the system

b 0,

6t+6.’c,(pu') 0

i, 1aP,, _
as+“’az,+p o, O

ap 8 2 148, _
£+ax'(urp)+3f,:rax +3.9r 0
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|. Method of moment

366 KINETIC THEORY OF DILUTE MONATOMIC GASES

which, \'vhcn averaged over velocity, yield the traceless part of the stress
tensor, its excess trace part, the heat flux, the diffusion flux, and 50 on. We
will denote them by the symbol ®f®): .
Dl = (A (v, 15 1)), (10.128)
where a = 1,2,3,4 and ( = 1,2, r. The i i
¢ e R P 150, T, mean
et 7 3 'eai ing o-f. a few leading
¢ AP P TP
&0 =m, = [p]?, P = A= 4TeP - p,
PP =Q =Q, - A, *P =, etc.

In the case of dilute gases A = T4, = 0 for the reason that p=TrP/3asis
c}car from'(_m.ss), b.ul we keep the term for generality’s sake, Although a
little repetitive, we list the set of relevant evolution equations in one place;

d dv

e = -V-pu or P - V-u, v=1/p, (10.129a)

d

PgrCi ==V, (10.129b)
d

U= =~V P+ pF, (10.129¢c)

4. r
P& =~-V:Q=-PVu+ Y F-J,

(10.129d)

d
L d o 7ta a
Pz =2 + A, {10.129)

" b2 22
where P- ,'/;I+A)§ + T
plar — gqyters - \
& =i /p, P opayp. T (10:130)
- & 2 ) » =il
A = E(hS"C(f,».f,)), Bianct it Fiier k. U

Z = -v . (ghimr) +{f(d, +® -V + F, - V)R (10.131b)

and i i i

= :;te;u:mm:?ilzscjn}z 1:!;1::(1”;1-:lhe previous sections. Explicit forms for
‘ W.c have seen that owing to the H theorem the equilibrium distribution
function has becr_n uniquely determined as an cquilibrium solution of the
Bol(‘z.mu.nn equation, and the parameters therein are identified with the
cc{unhbnum lemperature, density, and chemical potential in the spirit of the
Gibbs ensemble theory. As in the Chapman-Enskog and the conventional
moment method, in the modified moment method the nonequilibrium distri-

Ly= N, Tl
v ',), Vel

- . CELe]
Ve = =IM QM) — =2 0« “Tov iz
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10.7 MOOCIFIED MOMENT METHOO 367

TABLE 10.1 Kinematic Terms® Z|*’ in the Presence of Electromagnetic Fields

a Kinematic Terms

Lri] - @)
=V = 2(du = F)LLT 200,y [T ] + 28y
J‘}ll,v_tu 4 2py el "’
2 =V-yf - i{du—F) - )+ iy - 34,9 u = pd, In( o) =V < J;p/p)

3=V = (du~-F) (B=pU) + Q- (1w — UV - u)
A TSR e

4 -V B=p(du=F)+J(y=3UV-u) +J o4

Notation: J&=iU¥

(Lorentz force), z; = ¢,/m;

A«VxB

[ 7 | s
W= LC 0D

E=z(E+c 'uxB)
wag = 4[Vu = (Vu)'] + ez [ VA - (vAY]
[Mwy] =T wg =y, 11

) = m EEE S

*Nore: For dilute monatomic gases the case of @ = 2 docs not appear sinee &; = 0 identxcally. The
kinematic terms given here are in the corotating frame. that is, the sizn of the terms (11, wy
Q| * gy, and J, - e g in a fixed coordinate system are ch i to the ite sign in d
with the rules formulated in by the author; see J. Chem, Phys. 82, 3773 (1985).

bution function is built on the eguilibrium distribution function. But this
approach to the nonequilibrium solution of the Boltzmann equation requires
an extension of the meanings of the parameters such as the temperature and
50 on in the equilibrium distribution function into the nonequilibrium do-
main. The extension is accomplished by the assumption of local equilibrium
by which the equilibrium density and temperature in the equilibrium distribu-
tion function are interpreted as quantities depending on position and time.
This extension is in effect an act of assigning to the equilibrium parameters
the nonequilibrium quantities suitably defined as statistical mechanical aver-
ages for the nonequilibrium system in question. If this act of assignment is
mathematically formalized, it may be represented by the following set of

equations:
* Pie = Py (10.1323)
5t 9 (1g) pitl o= o, (10.132b)
T,=T or p&, =p¥, (10.132c)

where the symbol =, borrowed from the computer algorithm language,

paie )
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|. Method of moment

Finally, the conservation laws and constitutive equations, all of which are an

exact consequence of the Boltzmann equation

] 1/ p —u 0 0
,oa u +V-pl |+V 11 =10{,
E, pu Im-u+Q| |0
(M) _2 [H : Vu](z) ) ()

d {H/p}w ¥ N .| 2p[vu] A
pP— : = .
dt|Q/p w1, P vy d—u-H+Q-Vu+H-C VT | [C,pVT A©Q

| dt P

Key observations: 1) Even though we used various ( f ) f disappeared except for

¥ (kinematic high order) and A™ (dissipation)
2) Thus the number of places to close is two, rather one.
Lesson: Monitor exactly where they go from micro (kinetic) to macro (average)

(%w-vjf(t,r,v):c[f,fz] = 2[m-vu]”
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|. Method of moment

Let us tackle the dissipation term first, since we cannot get away from it.
A (E <m[cc](2) C[f, f2]>)

But, before we move on, let us think of what we are trying to do here first:
the seat of energy dissipation coming from the collision integral. Therefore, we

might need to recall the 2"d law of thermodynamics (lecture 3)

Sf)d‘P =0 where ¥ is calortropy
d¥ =T *(dE + dW) + dN: extended nonequilibrium Gibbs relation

Let us start from the balance equation for the calortropy (nonequilibrium entropy)

PV 1) = kg <[|n fo(v,r -1 f(v. r,t)>

where f© the thermodynamic branch of the Boltzmann equation
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Memo (a preparation before tackling 2" law)

Arnold Sommerfeld (1868-1951):

“Thermodynamics is a funny subject. The first time you go through it, you don't
understand it at all. The second time you go through it, you think you understand it,
except for one or two small points. The third time you go through it, you know you don't
understand it, but by that time you are so used to it, it doesn't bother you anymore.”

What?
2nd-law?
Why is it anything to do with here?

Is it dead animal?
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Memo (a preparation before tackling 29 law)

Recall lecture 3! Calortropy?
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I1. 2nd law of thermodynamics

By differentiating the local calortropy density with time and combining it with BTE

pCL—T+V.(—kB (o(in £° —1)f>)+kB<f (%+C-Vj|n fe >:o'c (E —kg (In £ C[f, f2]>).

After assuming f = f °, the positive calortropy production o, becomes (g;, = \v—v2 \)
1 27[ 0 * * * *
aC:ZkBjdvjdvzjo d¢jo db by, In(FE £87/ FEEE)(FE 18— £9££) > 0.

Then, if the calortropy production o, is worked out first, instead of the dissipation term A
in the conventional approach, and if there is a direct relation between them,

a thermodynamically consistent form of A can be obtained.
From the logarithmic form of the calortropy production, it will be convenient to write
the distribution function in the exponential form, instead of Grad's polynomial form;

c _ 1 2 Ny mpm
f _exp[—/{zmc +ZX h*” —N ||,
n=1
exp(—N) = (exp| | Zme? + > xOh ||}, p= L
Ny 2 ~ ’ kgT
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Il. 2nd law of thermodynamics

In this expression N is the normalization factor, ny is the number density, and X" unknown
macroscopic quantities, are the conjugate variables to the molecular expressions for moment, h",
The advantage of this exponential form is obvious: in the physical sense it is the only form that
satisfies the additive property of the calortropy and calortropy production, all of which are in the
logarithmic form; in the mathematical sense it assures the non-negativity of the distribution function
regardless of the level of approximations. It must also be noted that no finite approximation for

o0
moments is made in (3.5); that is, the number of moments goes to infinity as shown in 3 X"™Wh™,
n=1
This is in contrast with a common practice in considering only the first 13 moments from the outset

in the formulation of the theory. After the superscripts ¢ in the distribution function f* are dropped
for simplicity and with a short notation for the exponent, the distribution function can be rewritten

o0

n=

f = f%exp(—x), wherex = § ( XWp N) : (3.6)
|

With further introduction of notations and dimensionless variables (y being the post-collision value
of x).

—_ —_ — 4k
X12 = X1 + X2, Y12 = Y1 + Y2 = X5,

B o, 1 m
O, — . = .
kg g 0" n2d2\ 2T (3.7a)
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Il. 2nd law of thermodynamics

w=c m (W) = : ex L2 (W, wy) = : ex L2 _ L2
T Nigr OV E G P\ T ) et I =G SR T T )
(). = [ dFponav w2 A(w. W),
. 2w o0
[dru---Efd“'degf déf dEEgm---,
0 0
i 00
[dru---Efd\"degf (I'tl'bf dbbgm---,
0 0

the calortropy production can be expressed as

(3.7b)

0. = —kg (In fCLf, fo]) = %<(%mc2 +Y X R N) CLF® exp(—x), ;" exp(—lﬂ)

n=1

1 2 (8]
= 7ks f dv f v, f do f db b fO £ (x12 — yio) [exp(—yi) — exp(—x1n)]  (3.8)
0 0

1

=17 dT 12 f O f3” (x12 — y12) [exp(—y12) — exp(—x12)]

or

1
0 =7 ((x12 — y12) [exp(—y12) — exp(—x12)]). - (3.9)
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2nd law of thermodynamics

This form of mathematical equation is suitable for so-called cumulant expansion: from
Appendix B, it can be written as

(£} (+) 1f2

af—xlq(r Ky y---), Wherek

{{ee2 — yi2)?) )

00 00 3.10
e, = L P 3 (=1 RN - (—1}’IK(—J G40
ALY LS = 2,{' p [T ! P — /! I :

=1

Note that this form guarantees the positivity of the calortropy production regardless of the level
of approximations. In addition, when the distribution function (3.6) is inserted into the definition
of calortropy production, the dissipation term A" is shown to be directly related to the calortropy
production o,

0. = —kg (In fCLF, fo]) = —ks <—ﬁ > x"ncty, f:])

n=1

(3.11)

1 & 1 &
=Y XD(AMCLL, )= =Y XWA®.
T; Lf. f>]) T;
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2nd law of thermodynamics

Now the explicit form of the dissipation term A" can be derived from (3.10) and (3.11) by calculating
the first reduced collision integral x in terms of X'"; since x appearing in x| consists of a sum of

oa
various moments, x = f§ (Z Xnplm N), with the definition Ah™ = A" — pim* ete. Klz may
be expressed as a quadratic form of X and X,

1 o0
F=72 (x®an™ + X7 ARL) (xO AR + X0 81)) - (3.12)
n,i=I ¢

On rearrangement of the terms it may become

ni=I

where RE;” are scalar coefficients made up of collision bracket integrals of A and hg} for an

isotropic system of dilute gases. After comparing (3.10), (3.11) and (3.13),

oo oo
ni=1
the following dissipation term can be derived:
1 o0
=1
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I1. 2nd law of thermodynamics (???)

“ VI
olf
_. "\-{

4

Just a little extra push is all it takes!

—
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2nd law of thermodynamics

In the meantime, the unknown conjugate variables X, which were first introduced in (3.5)
of the distribution function, need to be determined in terms of macroscopic variables, consistent
with the laws of thermodynamics. One way to achieve this is to generalize the equilibrium Gibbs
ensemble theory—providing the relationship between thermodynamic variables and the partition
functions—to nonequilibrium processes. Such nonequilibrium generalization was developed by Eu’
and the main result relevant to the present work can be summarized as

a 1 1 1
() . — () ()
(h'™f)/p = —kgT (a}(("“’ In Z) . where Z = o (exp [ o7 (zmc + E X" h )]>

n=I
(3.16)
Then the X" can be determined in terms of the macroscopic flux (A"f) by solving the differential
equation (3.16). The leading order approximate solutions are known to be
I Q

XV = _— X = ___~ (3.17)
2p pC,T

Finally, the moment equation for general type of molecules (2.1) can be rewritten as (n = 2 for
shear stress); still exact to the original Boltzmann equation,

d(Tl
p(!p

S+ Vw2 Val® 4 2p [Vl = ZR”“X‘” B B ). (3.18)
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I1I. Cumulant expansion

After the canonical distribution function is inserted into the calortropy balance equation, the
calortropy production term can be expressed in terms of exponential function as follows:*’

1
5. =—g(InfCLf. f2]) = 2 ((x12 = y12) [exp(—y12) — exp(—x12)]), - (BI)

This form of mathematical equation is suitable for so-called cumulant expansion. It can further be
cast into

1
5 o= _ +) _ R=)
G =7 [RPG) — RO, _, . (B2)
R0 = ((x12 — yi2) [exp(=2y12) — 1]}, RT0) = ((x12 — yi2) [exp(—ixin) — 1]) .

Here the parameter 2 is introduced as a bookkeeping index. After expansion in series of R&(1),
it will be set » = 1. A description of the cumulant expansion will be helpful here. Let fix) be
the probability distribution of x. The /th moment of this probability distribution is defined as the
expectation value of x':

(x') = f X f(x)dx, (B3)
and the moment-generated function as the expectation value of e**

(e*) = f floedx. (B4)

The following relations hold for the power series and derivatives:

A" A" d .
() = Zﬁff(-r)-r’dx =2 e ix)= [@(‘5‘“’ )], . ®5)
=0 n=0 =

The logarithm of the characteristic function is called the cumulant-generating function and its series

coefficients :cf“ in the Taylor expansion for A are called cumulants of the variable x:

oM e w [d
ln{e } = Z Tk ok = Eln{e ' Y (B6)
=0 =
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I1I. Cumulant expansion

Expressions for cumulants in terms of moments may be obtained directly from the definition and
Eq. (B3), for example,

€D = [%IH(EM}]);D = [{eix)%{e“)] - = I:;—JL (EM):IJ:D = {x),
o = [% In (eu)]h:o _ [_ﬁ (% e‘“))z + {;_M}:_; {EM}LU = ()= (1%,

(B7)
It should be noted that (¢**) = 1 for A = 0. Then the relationship between moments and cumulants
may be summarized as follows:

o J‘.." o0 }..:
Ax) n_ +)
{e )_ZT(X)_EKP[ZEKI ] (B8)
1=0 1=0
When this is applied to R*= (1) in (B2), the following cumulant expansion can be obtained:
0o i
—A
R[i](l) = {{I:_Iu — }J|2)2:]c}”2 lexp [ (!_');(!H:;] — 1} . (Bg'}
=

In this step, since there is a term (x> — yy2) in (B2), it is convenient to introduce a pre-factor {{(x»
- }’IZ)Z}C}IQ in the front and then define subsequent cumulants. With such a factor the cumulants
are constructed systematically by expansion and the resulting leading (1st-mean, 2nd-variance,

3rd-skewness) cumulants x'ﬁc’ are given by the moments of reduced collision integrals x| 5 3

23
K = 1, 15" = $:—T — ki = jFZ—T — 3K F 205, (B10)
where
1 1 1
K1=5 {2 — ylz)z)c}”2 K2=7 {{Cri2—y12) (xf,—vi2)).} - &3 ~1 {2 —=y12) (xi—y1) .} -
(B11)
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I1I. Cumulant expansion

The cumulant expansion may be regarded as a partial resummation of the expansion of the Boltzmann
collision integral in a series of the parameter Kn - M, and as such, it takes into account highly nonlinear
irreversible processes to infinite order. Finally, the calortropy production can be written as

_ +) +)
U'EZKIEQ(KE :Ké :"')1‘

1 n 172
K| = E [((112 - J"IZ) )E} 3 (Blz}
1 X (=1 =

(=) I[:l:} (+) (

‘;‘I( LS I } 2K| exXp [E T’(! — €Xp E I K
Using three leading cumulants given in (B11) the expanded form can be expressed as
_ K1 1 (k2 y 1
0c = 5 1€Xp K1 — 5 .‘('_|+K —I—3I +3K7+2K1 -
(B13)

l (k 1 (&
_Exp[_'(l+E(K_T_K|2)_§(_3_3“’2+2"(1) :”

Notice that the source of different sign of the exponent is traced to the calortropy production,
In(f* /20 f* 2" — ff2), in (3.4). Finally, if the first-order cumulant approximation is applied,
it reduces to

g :Kf‘q{m]:msinhrq. (B14)
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V. Balanced closure (Myong PoF 2014)

A thermodynamicalIy—consistent constitutive equation, still exact to BTE,

d(II/ o) ' o —
PSR O LS Rl )

The simplest closure in 2"-order level is V- ¥™ =,

while the 2nd-order closure of RH term is RZYXPq(x”). Then

P—d (I(Ijt/ P, o :H-Vu](z) +2 p[Vu](Z) P Il‘q(zcl),

HNs

sinh &, (mkg )V T1’4(H n Q. Q/T]

» K1
7 K
NS NS

q(Kl) = X, \/—d 0

This is the 2nd-order constitutive equation beyond the two-century old
Navier-Stokes equation and recovers NS,

2p [Vu](z) =—pIL/ 1.
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IVV. Balanced closure (Myong PoF 2014)

The lessen: Type of closure may not be important. Rather, balanced
treatment of two open terms! Remember ‘balanced’ does not mean

anything in case of only one term.
Though looking trivial at first glance, we will appreciate the beauty and real

power of the balanced closure, when we tackle the high Mach number

shock singularity in Lecture 11.
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Q&A
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